rismo de fundamentação desenvolvido deselegante e, por vezes, complexamente.

Matemática Axiomátizada — Análise Geral — redução de cada teoria matemática a uma axiomática, não contraditória, e quando possível, completa. Fundamentação discutível devido a dificuldades de demonstração de não-contradição — em geral, por modelos — e da completude.

29 — Do ponto de vista do rigor matemático, apontamos os resultados importantes seguintes nos aspectos demarcados na matemática actual: necessidade de fundamentação da Análise Clássica; condenação de alguns dos seus processos de construção; complexi-

dade e deselegância da matemática intuicionista; demonstração construtiva do Axioma de Zermelo; existência de propriedades da aritmética — matemática portanto — que escapam a qualquer axiomática; se há algnm sistema de axiomas, não-contraditório, para a teoria dos conjuntos, é possível juntar o Axioma de Zermelo ou a Hipótese do Contínuo, sem que impliquem contradição no sistema.

30 — Claramente os pontos de vista tomados nos quadros apresentados anteriormente contribuiram para o esclarec mento do pensamento matemático e estão-se esclarecendo mutuamente.

Sôbre alguns problemas de ocupações

por R. M. Barbosa

Pretendemos com êste trabalho divulgar alguns estudos que fizemos sôbre Ocupações, especialmente quatro problemas, aplicámos a estas questões as probabilidades como algorítmo demonstrativo.

No final do trabalho procurámos mostrar com novas interpretações a possibilidade de obter-se como consequência quatro fórmulas da análise combinatória usual.

Acrescentou-se para elucidação um exemplo numérico para cada um dos problemas com os respectivos diagramas.

A — Quatro problemas de ocupações--Enunciados

A. 1 — Determinação do número de ocupações possíveis de K celas distinguíveis, com exclusão de celas ocupadas, por n elementos distinguíveis.

- A. 2 Determinação do número de ocupações possíveis de K celas distinguíveis, sem exclusão das celas ocupadas, por n elementos distinguíveis.
- A. 3 Determinação do número de ocupações possíveis de K celas distinguíveis, com exclusão das celas ocupadas, por n elementos indistinguíveis.
- A. 4 Determinação do número de ocupações possíveis de K celas distinguíveis, sem exclusão das celas ocupadas, por n elementos indistinguíveis.

B — Denominações

Aos números fornecidos pelos problemas A. 2, A. 3 e A. 4 denominam-se respectivamente número de Maxwell-Boltzman, nú-

mero de Fermi-Dirac ou Fermions ou ainda Fermiões, e número de Bosé-Einstein ou Bosons ou ainda Bosões.

Alguns autores preferem denominar fermions ou bosons aos elementos, assim em A. 3 os elementos seriam chamados fermions, em A. 4 seriam bosons; e nessa interpretação o número de fermions, ou de bosons, é o número n de elementos indistinguíveis, e não o número de ocupações.

C - Notações

Indicaremos os números dos problemas anteriores por $N(K^+;n^+)$, $N(K;n^+)$ ou N(Fermi), e N(K;n) ou N(Bos'e).

D - Deduções

D. 1 — Procuraremos a probabilidade de n celas determinadas (das K celas dadas) serem ocupadas pelos n elementos distinguíveis, com exclusão das celas ocupadas.

Admitindo que i celas determinadas já foram ocupadas, portanto excluídas, a probabilidade de ocupação de outra cela determinada é dada por (n-i)/(K-i).

Fazendo variar i de 0 a n-1 teremos a probabilidade pedida:

$$\prod_{i=0}^{n-1} \frac{n-i}{K-i} = \frac{n!}{K^{(n)}}.$$

Atendendo à A. 1 e C o número de elementos do universo é dado por $N(K^+, n^+)$, e o número de elementos do evento é dado por n!, pois os elementos são distinguíveis. Segue que a probabilidade é dada também por:

$$\frac{n!}{N(K^+;n^+)}.$$

Comparando os dois valores da probabilidade teremos:

D. 1. 1
$$N(K^+; n^+) = K^{(n)}$$
.

Nota — Obrigatòriamente tem-se $n \leq K$.

D. 2 — Procuremos a probabilidade de uma cela determinada ser ocupada por n elementos distinguíveis.

Admitindo que a cela determinada já foi ocupada por i elementos, a probabilidade de ocupação por outro elemento será dada por: 1/K.

Fazendo i variar de 0 a n-1 a possibilidade pedida é dada por: $1/K^n$.

Atendendo à A. 2 e C o número de elementos do universo é $N(K; n^+)$ e o número de elementos do evento é 1, logo a probabilidade também é dada por:

$$\frac{1}{N(K;n^+)}$$
.

Comparando as probabilidades anteriores obtemos:

D 2. 1
$$N(MAXWELL) = N(K; n^+) = K^n$$

D. 3 — No problema A. 3 os elementos são indistinguíveis, portanto no raciocínio aplicado em D. 1 os elementos não podem ser pensados permutados, ou que o número de elementos do evento é 1 e o número de elementos do universo é N(Fermi).

$$N(\text{Fermi}) = \frac{K^{(n)}}{n!} = \frac{K!}{n!(K-n)!}$$

ou

D 3. 1
$$N(\text{Fermi}) = {K \choose n}$$

Nota — Obrigatòriamente tem-se $n \leq K$.

D. 4 — Procuremos a probabilidade de uma cela determinada (sem exclusão da cela ocupada) ser ocupada pelos n elementos indistinguíveis.

Substituamos inicialmente a cela escolhida por n sub-celas em idênticas condições que as celas anteriores, de tal modo que sejam ainda distinguíveis mas com a mesma probabilidade de ocupação.

A substituição anterior coincide em pensar o acréscimo de n-1 celas.

Consideremos a condição, agora, que ocupada uma cela, ela será excluída.

As condições estabelecidas transformam o problema A. 4 no problema A. 3, com modificação no número de celas, isto é:

$$N(K; n) = N(K + n - 1^+; n)$$

ou

$$N(K;n) = \binom{K+n-1}{n}$$

ou

D. 4. 1
$$N(\operatorname{Bos\acute{e}}) = {K+n-1 \choose n}$$

E — Interpretação dos quatro problemas em têrmos de agrupamentos

Invertamos todos os problemas, com a inclusão de duas regras, considerando ocupação de K celas distinguíveis por n elementos, como agrupamentos distintos de K celas distinguíveis em n lugares.

REGRA E. 1 — Celas sem exclusão ou com exclusão, quando ocupadas, são interpretadas por celas podendo ser repetidas ou não, respectivamente, nos agrupamentos.

REGRA E. 2 — Elementos distinguíveis ou indistinguíveis serão interpretados como lugares distinguíveis ou indistinguíveis (isto é, em têrmos de Arranjos ou de Combinações).

F - Identificações

Teremos com as interpretações anteriores as seguintes identificações:

$$N(K^+; n^+) = A_{K,n}$$
 (número de arranjos simples)

$$N(K; n^+) = (A C)_{K,n}$$
 (número de arranjos completos)

$$N(K^+;n) = C_{K,n}$$
 (número de combinações simples)

$$N(K; n) = (CC)_{K,n}$$
(número de combinações completas)

G - Fórmulas

Utilizando as identificações dadas em F teremos as quatro fórmulas seguintes, da análise combinatória usual:

G. 1:
$$A_{K,n} = K^{(n)} = K(K-1)(K-2)\cdots(K-n+1)$$

G 2:
$$(A C)_{K,n} = K^n$$

G. 3:
$$C_{K,n} = \binom{K}{n}$$

G. 4:
$$(CC)_{K,n} = {K+n-1 \choose n} = C_{K+n-1,n}$$

$\mathrm{H}-\mathsf{Observações}$

É interessante observar que apenas G. 1 não pode ser considerada como deduzida dos problemas de ocupação, desde que em D. 1 utilizou-se implicitamente o conceito e fórmula de arranjos (n!).

I — Exemplos numéricos

I. 1 — Número de ocupações de 3 celas por 2 elementos distinguíveis, com exclusão das celas ocupadas:

$$N(K^+, n^+) = 3^{(2)} = 6.$$

Diagramas - (*)

$$(a | b | -)$$
 $(b | a | -)$
 $(a | -| b)$ $(b | -| a)$
 $(-| a | b)$ $(-| b | a)$

^(*) Usamos as representações de Feller.

I. 2 — Número de ocupações de 2 celas por 3 elementos distinguíveis, sem exclusão de celas ocupadas:

$$N(\text{MAXWELL}) = 2^3 = 8$$
.

Diagramas -

$$(ab | c)$$
 $(c | ab)$
 $(ac | b)$ $(b | ac)$
 $(bc | a)$ $(a | bc)$
 $(abc | -)$ $(-|abc)$

I. 3 — Número de ocupações de 4 celas por 3 elementos indistinguíveis, com exclusão da cela ocupada:

$$N(\text{Fermi}) = \binom{4}{3} = 4$$
.

Diagramas -

$$(1 | 1 | 1 | 0)$$

 $(1 | 1 | 0 | 1)$
 $(1 | 0 | 1 | 1)$
 $(0 | 1 | 1 | 1)$

I. 4 — Número de ocupações de 3 celas por 4 elementos indistinguíveis, sem exclusão da cela ocupada:

$$N(\operatorname{Bos\acute{e}}) = {3+4-1 \choose 4} =$$

$$= {6 \choose 4} = {6 \choose 2} = 15.$$

Diagramas -

BIBLIOGRAFIA

- [1] Feller, William An introduction to Probability Theory and its Applications, Wiley, [1950], N. Y.
- [2] Gil, J. M. Uma interpretação da análise combinatória e algumas aplicações, in. Gazeta de Matemática, N.º 79-80, N.º 81 e N.º 82-83, Lisboa.
- [3] PARZEN, EMANUEL Modern Probability Theory and its Applications, Wiley, [1960], N. Y.
- [4] RIORDAN, JOHN An introduction to Combinatorial Analysis, Wiley, [1958], N. Y.
- [5] Springer, G. Notas de aula de um curso sôbre Estruturas Finitas da Matemática, 1961, S. Paulo.
- [6] BARBOSA, R. MADSEN Um Curso Moderno Etementar de Análise Combinatória, publicação da F. F. C. L. de Araraquara (a ser publicado).

Duas observações sobre Estática do Ponto Material

por José Manuel dos Santos Simões Pereira

As duas observações que a seguir se apresentam surgiram-nos quando estudámos a Estática do Ponto Material segundo as «Lições de Mecânica Racional» do Ex.^{mo} Sr. Prof. Doutor Diogo Pacheco de Amorim.

Na primeira referimo-nos a um facto que parece estar em desacordo com a nossa experiência corrente: o de serem instáveis as posições de equilíbrio indiferente. Trata-se é claro duma propriedade que admite uma excepção quando entre as forças aplicadas ao ponto se encontram algumas que dependem da sua velocidade. É o caso, por exemplo, do atrito ou de resistências do meio ambiente que estão presentes na maioria das questões a que diz respeito a nossa experiência corrente.

Na segunda constrói-se um exemplo de posição de equilíbrio estável à qual não corresponde nenhum extremo da função de for-