ANO XXIV-N.º 90-91 GAZETA DE MATEMÁTICA JAN./JUNHO-1963

EDITOR: Gazeta de Matemática, Lda.

ADMINISTRADOR: A. Sá da Costa

REDACTORES: J. Gaspar Teixeira, J. Morgado e J. da Silva Paulo

Composto na Tipografia Matemática, Lda. — Rua Diário de Notícias, 134 - 1.º - Esq. — Telef. 36 94 49 — LISBOA 2

Funções periódicas na recta e no plano complexo. Funções duplamente periódicas; funções elípticas(1)

por Ruy Luis Gomes

 Caracterização do conjunto dos períodos de uma função sobre R.

Definição 1. Seja $f: R \to R$ uma aplicação de R em R.

Diz-se que TeR é um período de f quando

$$f(x+T)=f(x)$$

para todo xeR.

TEOREMA 1. O conjunto dos periodos de f constitue um subgrupo do grupo aditivo R dos números reais.

Chama-se a este subgrupo G — grupo dos períodos de f.

DEMONSTRAÇÃO.

- 1) $0 \in G$, visto que f(x+0) = f(x) para $\forall x \in R$.
- 2) $T \in G \Longrightarrow -T \in G$, visto que a hipótese $T \in G$ permite escrever f(x-T) = f(x-T) + T = f(x), $\forall x \in R$.

3) $T_1 \in G \in T_2 \in G \Rightarrow T_1 + T_2 \in G$, visto que a hipótese $T_1, T_2 \in G$ permite escrever $f(x + (T_1 + T_2)) = f[(x + T_1) + T_2] = f(x + T_1) = f(x)$ para $\forall x \in R$.

TEOREMA 2. Se f é uma aplicação continua de R em R, então G é um subgrupo fechado de R.

Demonstração. Seja (T_n) uma sucessão de elementos de G, convergente para $T \in R$.

Precisamos de mostrar que $T \in G$, o que equivale a f(x + T) = f(x) para $\forall x \in R$.

Ora como $f: R \to R$ é continua tem-se $f(x+T) = f(x + \lim_{n} T_n) = \lim_{n} f(x+T_n) = f(x)$ para $\forall x \in R$.

Vamos agora caracterizar os subgrupos fechados de R.

TEOREMA 3. Os únicos subgrupos fechados de R são: $\{0\}$, R e $\{n T\}$, em que 0 < T e $n = 0, \pm 1, \pm 2, \cdots$.

DEMONSTRAÇÃO. Que estes três subgrupos são fechados, é evidente; vejamos agora que não existe mais nenhum.

⁽¹⁾ Lição do Curso de Funções Especiais realizado no Instituto de Física e Matemática da Universidade do Recife.

Seja, então, G um subgrupo fechado de R e distingamos as duas hipóteses: a) G possue pelo menos um ponto de acumulação; b) G não possue nenhum ponto de acumulação.

a) Seja T um ponto de acumulação de G e representemos por (T_n) , $T_n \in G$, uma sucessão convergente para T. Sabe-se que é possível construir uma tal sucessão cujos elementos são todos distintos.

Como G é fechado, $T \in G$ e portanto $(T - T_n)$ é uma sucessão de elementos de G convergente para zero, o que nos permitirá concluir que G é denso em R e por conseguinte coincide com R.

Com efeito seja a > 0 e consideremos o intervalo $(a - \varepsilon, a + \varepsilon), \varepsilon > 0$.

Como $(T-T_n) \to 0$, existe *n* tal que o período $0 < |T-T_n| = \tau < \varepsilon$.

Designemos por n_0 o número inteiro tal que

$$(n_0-1)\,\tau \leq a+\varepsilon < n_0\,\tau.$$

O período $(n_0-1)\tau \epsilon (a-\epsilon, a+\epsilon)$, de contrário

$$\tau = n_0 \tau - (n_0 - 1) \tau > a + \epsilon - (a - \epsilon) = 2 \epsilon$$
,
o que contradiz $\tau < \epsilon$.

Como s é arbitrário, está demonstrado que $a \in G$ para a > 0 e como G é um grupo, resulta finalmente G = R.

b) Nesta hipótese ou o conjunto dos períodos positivos é vasio e, então, $G = \{0\}$, ou não é vasio e, então, admite um primeiro elemento $T_0 > 0$.

Mas neste caso dado T > 0, $T \in G$, temos

$$T = n T_0 + T'$$

onde $1 \le n$ e $0 \le T' < T$, o que implica T' = 0, de contrário o período $0 \ne T' = T - n T_0 < T_0$, contra a hipótese de que T é o primeiro elemento positivo de G.

Consequentemente

$$T \in G \Rightarrow T = n T_0$$

com n inteiro (positivo, nulo ou negativo).

 Caracterização do conjunto dos períodos de uma função sobre R² (função de 2 variáveis).

Definição 2. Seja $f: R^2 \to R$ uma aplicação do espaço vectorial R^2 em R. Diz-se que um vector $\overrightarrow{T} \in R^2$ é um período de f quando

$$f(\vec{x} + \vec{T}) = f(\vec{x}), para \ \forall \ \vec{x} \in \mathbb{R}^2.$$

TEOREMA 4. Os períodos de f formam um subgrupo G aditivo dos vectores de R².

Demonstração. Como a do teorema 1.

TEOREMA 5. Se $f: \mathbb{R}^2 \to \mathbb{R}$ é continua, então G é um subgrupo fechado.

Demonstração. Como a do teorema 2.

Para caracterizar os subgrupos fechados de R² começamos por demonstrar o seguinte

TEOREMA 6. Se um grupo fechado G de R^2 possui um ponto de acumulação, então contém um subgrupo |ta|, onde $a \neq 0$ é um elemento de G e t um número real qualquer (1).

Demonstração. Se G possue um ponto de acumulação, zero é também ponto de acumulação e consequentemente existe uma sucessão (x_p) de pontos de G, tal que $x_p \neq 0$ e $\lim x_p = 0$.

BOURBAKI - Topologie Générale, chapitre VII, § 1, 2 - Proposition 3.

Seja P um cubo aberto de centro zero. Resulta do axioma de Arquimedes que existe um inteiro positivo k_p tal que $k_p x_p \in P$, $(k_p + 1) x_p \notin P$. Como $k_p x_p \in \overline{P}$, que é um compacto, a sucessão $(k_p x_p)$ tem um valor de aderência a em \overline{P} . Vejamos que $a \neq 0$ e para isso demonstremos que $a \notin P$.

Ora de

$$||(k_p + 1)x_p - a|| \le ||k_p x_p - a|| + ||x_p||$$

e das hipóteses

 α valor de aderência de $(k_p x_p)$

$$\lim x_p = 0\,,$$

resulta que α é valor de aderência da sucessão $((k_p + 1)x_p)$.

Mas $(k_p+1)x_p e - P = -\overline{P}$, logo ae - P, como queriamos provar.

Por outro lado, como $x_p \in G$ e G é um grupo fechado, vem $a \in G$.

Falta apenas verificar que taeG para todo o número real t.

Designando, como é costume, por [t] o maior inteiro menor ou igual a t, tem-se

$$||[t k_p] x_p - t a|| \le ||[t k_p] x_p - t k_p x_p|| + + ||t k_p x_p - t a|| = |[t k_p] - t k_p || ||x_p|| + + |t||k_p x_p - a|| \le ||x_p|| + |t|||k_p x_p - a||.$$

Mas $x_p \to 0$ e a é um valor de aderência da sucessão (x_p) , resulta que ta é um valor de aderência de $([tk_p]x_p)$ e portanto pertence a G (visto G ser um grupo fechado).

Com base neste teorema pode agora demonstrar-se

TEOREMA 7. Seja G um subgrupo fechado de R², de rang f; existe um subespaço vectorial máximo V contido em G. Se W é um subespaço suplementar qualquer de V, então G \cap W não possue nenhum ponto de acumulação, e G é soma directa de V e de G \cap W (1).

Demonstração. Em primeiro lugar recordemos que se chama rang de uma parte A de R^2 a dimensão do subespaço vectorial gerado por A.

Dizer que G tem rang r é, pois, dizer que G gera um subespaço vectorial de dimensão r.

Mostremos que existe um subespaço máximo $V \subset G$.

Como todo o subespaço contido em G é um subconjunto de $\bigcup_{a\in M} Ra$, onde M é o conjunto dos elementos $a\in G$ tais que $Ra\subset G$, basta demonstrar que $\bigcup_{a\in M} Ra$ é um subespaço.

Ora se x, y pertencem a $\bigcup_{a \in M} R a$, tem-se x = ra, y = r'a' com $Ra \subset G$, $Ra' \subset G$, o que implica $\forall \alpha \beta \in R$, $\alpha x + \beta y = \alpha r \cdot a + \beta r' \cdot a' = b \in G$ e

$$\gamma b = \gamma \alpha r \cdot \alpha + \gamma \beta r' \cdot \alpha' \in G,$$

para todo yeR. Logo,

$$\alpha x + \beta y \in Rb \subset G$$
,

isto é,

$$\alpha x + \beta y \in \bigcup_{a \in M} Ra$$
, q. e. d.

Então
$$V = \bigcup_{a \in M} R a$$
.

Seja agora W um subespaço suplementar de V. Dado $x \in G$ vem

$$x = z + y$$
, $z \in V \in y \in W$.

Mas como $V \subset G$, resulta $y = x - z \in G$ e portanto

$$G = V + W \cap G$$
.

Falta agora mostrar que $W \cap G$ é um subgrupo fechado que não admite nenhum ponto de acumulação.

Mas para isso basta atender a que $W \cap G$ é um grupo fechado (como intersecção de dois grupos fechados) que não pode conter

⁽¹⁾ Bourbaki, op. cit. Teorema 2, p. p. 65.

nenhum espaço da forma Ra com $a \neq 0$, pois V é máximo.

Se p é a dimensão de V, tem-se $p \leq r$ e $W \cap G$ possue $rang \ r - p$.

O problema da caracterização do grupo G, está agora reduzido ao estudo dos grupos como $G \cap W$ que não admitem pontos de acumulação — grupos discretos.

Ora se um grupo discreto $G \in \mathbb{R}^2$ tem rang zero reduz-se a $\{0\}$ e se tem rang um reduz-se a $\{na\}$, $a \neq 0$ e n inteiro, por força do que já demonstrámos para a recta R.

Resta considerar a hipótese — rang de G=2 e para isso comecemos por demonstrar o

TEOREMA 8. Sejam G um subgrupo discreto de R², de rang 2, a₁, a₂ uma base de R² constituída por elementos de G e P o paralelogramo construído sobre a₁, a₂.

Então o conjunto $G \cap P$ é finito e constitui um sistema de geradores de G; além disso todo elemento de G se pode exprimir como combinação linear, com coeficientes racionais, de a_1 e $a_2(1)$.

Demonstração. 1) $G \cap P$ é finito, visto que $G \cap P$ é compacto e dicreto; 2) Seja x um ponto qualquer de G; tem-se

$$x = t_1 a_1 + t_2 a_2, t_1, t_2 \in R$$
.

mas escrevendo

$$\begin{aligned} x &= [t_1] a_1 + [t_2] a_2 + x - [t_1] a_1 - [t_2] a_2 = \\ &= [t_1] a_1 + [t_2] a_2 + (t_1 - [t_1]) a_1 + (t_2 - [t_2]) a_2 = \\ &= x_1 + z_1 \,, \end{aligned}$$

vê-se que

$$z_1 = (t_1 - [t_1]) a_1 + (t_2 - [t_2]) a_2 e P,$$

pois

$$0 \leq t_i - [t_i] \leq 1.$$

Mas como

 $a_1, a_2 \in G \cap P$ e $z_1 = x - [t_1] a_1 - [t_2] a_2 \in G$, resulta de $a_1, a_2, z_1 \in G \cap P$ e de

$$x = [t_1]a_1 + [t_2]a_2 + z_1,$$

que os elementos de $G \cap P$ formam um sistema de geradores de G.

3) Mostremos finalmente que t_1, t_2 são racionais.

Escrevendo

$$m x = [t_1 m] a_1 + [t_2 m] a_2 +$$

 $+ m x - [m t_1] a_1 - [m t_2] a_2$
 $m x = x_m + z_m$, m inteiro,

resulta que

$$z_{m} = (m t_{1} - [m t_{1}]) a_{1} + (m t_{2} - [m t_{2}]) a_{2} \in G \cap P,$$
pois $0 \le m t_{i} - [m t_{i}] \le 1$.

Mas como $G \cap P$ é finito e m inteiro qualquer, têm de existir inteiros distintos h, k tais que

$$z_h = z_k$$

o que implica

$$h t_i - [h t_i] = k t_i - [k t_i]$$
$$(h - k) t_i = [h t_i] - [k t_i]$$

donde

$$t_i = \frac{[h t_i] - [k t_i]}{h - k},$$

q. e. d.

COROLÁRIO. Existe uma base a₁, a₂ de R² tal que para todo x e G

$$x = m_1 a_1' + m_2 a_2'$$

onde m1, m2 são inteiros.

Demonstração. Como os elementos de $G \cap P$ formam um sistema de geradores de G, dado $x \in G$, existem b_1, \dots, b_q de $G \cap P$

⁽¹⁾ BOURBAKI, op. cit. Proposition 1, pp. 62.

tais que

$$x = \sum_{i=1}^{q} n_i b_i$$
, n_i inteiros.

Mas pelo teorema anterior

$$b_i = t_1^{(i)} a_1 + t_2^{(i)} a_2,$$

com $t_1^{(i)}$, $t_2^{(i)}$ racionais.

Designando, então, por d um múltiplo comum dos denominadores de $t_1^{(i)}$, $t_2^{(i)}$, vem

$$x = \left(\sum_{i=1}^{q} n_i t_1^i\right) a_1 + \left(\sum_{i=1}^{q} n_i t_2^{(i)}\right) a_2$$
$$x = m_1 a_1' + m_2 a_2'$$

onde

$$a_1' = \frac{a_1}{d}, \ a_2' = \frac{a_2}{d} \ e \ m_1 = d \sum_{i=1}^q n_i t_1^{(i)},$$

$$m_2 = d \sum_{i=1}^q n_i t_2^{(i)}$$

são inteiros.

Isto significa que G é um subgrupo do grupo gerado pelos elementos $\frac{a_1}{d}$, $\frac{a_2}{d}$, em que d é um número inteiro conveniente.

Vamos, porém, demonstrar o

TEOREMA 9. Todo grupo de R² discreto e de rang 2 coincide com o grupo

$$|n_1 b_1 + n_2 b_2|$$

em que b₁, b₂ são elementos independentes de-G.

Demonstração (1). 1) Existe um par de elementos independentes b_1 , b_2 de G tal que o paralelogramo construido sobre b_1 , b_2 tem área inferior ou igual à do paralelogramo construido sobre qualquer outro par de elementos independentes de G.

Pelo teorema anterior dados dois elementos x_1, x_2 de G, tem-se

$$x_1 = x_{11} a'_1 + x_{12} a'_2$$

 $x_2 = x_{21} a'_1 + x_{22} a'_2$,

onde xik são inteiros.

Ora

$$x_1 \wedge x_2 = \det(x_{ik}) \cdot a_1 \wedge a_2$$

e portanto o ínfimo das áreas dos paralelogramos construidos sobre os pares x_1, x_2 corresponde ao ínfimo dos $|\det x_{ik}|$, que são sempre números inteiros. O ínfimo é, pois, um mínimo e um mínimo positivo se nos restringirmos aos pares de elementos independentes $(\det(x_{ik}) \neq 0)$.

Seja, então, b_1, b_2 um par de elementos independentes tal que

$$|\det(x_{ik})| \ge \det(b_{ik}) \ge 1$$
.

2) O par b₁, b₂ gera o grupo G.

Raciocinemos por absurdo, admitindo que existe z e G tal que na decomposição

$$z = z_1 \, b_1 + z_2 \, b_2$$

um dos coeficientes, z1, não é inteiro.

Somando a z um elemento conveniente de G

$$z' = n_1 b_1 + n_2 b_2$$
, n_1, n_2 inteiros,

podemos obter um elemento u de G tal que em

$$u = z + z' = (z_1 + n_1) b_1 + (z_2 + n_2) b_2 =$$

= $u_1 z_1 + u_2 z_2$

se tenha

$$0 < u_1 < 1$$
.

Consideremos agora o par de elementos independentes de G

$$u = u_1 b_1 + u_2 b_2 = (u_1 b_{11} + u_2 b_{21}) a'_1 + (u_1 b_{12} + u_2 b_{22}) a'_2$$

$$b_2 = b_{21} a'_1 + b_{22} a'_2.$$

⁽¹⁾ BOURBAKI, op. cit. Exercice 1, pp. 72.

Teremos

 $u \wedge b_2 = u_1 \det(b_{ik}) a_1' \wedge a_2'$

com

$$u_1 \det(b_{ik}) < \det(b_{ik})$$

o que é absurdo.

Logo

$$G = \{n_1 b_1 + n_2 b_2\}.$$

Os resultados anteriores permitem-nos concluir que o conjunto dos períodos de uma função contínua em R² pertence a uma destas seis categorias:

- 1) $G = \{(0,0)\};$
- 2) $G = \{r(a,b)\}, r \in R;$
- 3) $G = \{n(a, b)\}, n \text{ inteiro};$
- 4) $G = \{n(a,b) + r(c,d)\}, n \text{ inteiro } e$ $r \in R;$
- 5) $G = \{n(a, b) + m(c, d)\}, n \in m \text{ inteiros};$
- 6) $G = R \times R$.

DEFINIÇÃO 3. Quando $G = \{n(a,b)\},$ $(a,b) \neq 0$, diz-se que f é simplesmente periódica de período fundamental $\vec{T} = (a,b)$.

Quando $G = \{ n(a,b) + m(c,d) \}$, onde (a,b),(c,d) são linearmente independentes, diz-se que f é duplamente periódica, de periodos $\vec{T}_1 = (a,b)$, $\vec{T}_2 = (c,d)$.

 Caracterização do conjunto dos períodos de uma função de variavel complexa.

Como o plano complexo C é isomorfo a \mathbb{R}^2 , podemos enunciar imediatamente o

Teorema 10. O conjunto dos periodos de uma aplicação continua $f: C \to C$ é um subgrupo fechado de C.

COROLÁRIO. O conjunto dos períodos de uma função analítica no plano complexo é um subgrupo fechado de C. Definição 4. Uma função f: C o C dizse duplamente periódica quando o conjunto G dos seus períodos é da forma

$$G = |n \omega_1 + m \omega_2|,$$

onde ω_1 , ω_2 são números complexos independentes com relação a $R\left(\frac{\omega_1}{\omega_2} \notin R\right)$. Diz-se que ω_1 , ω_2 são os períodos fundamentais de f.

Quando $G = \{n \omega\}$ a função diz-se simplesmente periódica.

TEOREMA 11. Uma função f analitica no plano complexo e duplamente periódica reduz-se a uma constante.

Demonstração. Sejam ω_1 , ω_2 os seus períodos fundamentais e designemos por P o paralelogramo construído sobre ω_1 , ω_2 .

Como P é compacto e f é continua em P, temos $|f(z)| \leq M$ em P.

Mas dado z'e C tem-se

$$z' = t_1 \, \omega_1 + t_2 \, \omega_2 \, , \, t_1 \, , t_2 \, \mathrm{e} \, R$$

e portanto

$$z' = (t_1 - [t_1]) \omega_1 + (t_2 - [t_2]) \omega_2 + [t_1] \omega_1 + [t_2] \omega_2$$

$$z' = z + [t_1] \omega_1 + [t_2] \omega_2, z \in P,$$

o que implica

$$|f(z')| = |f(z)| \leq M,$$

quere dizer f limitada em todo plano.

Então pelo teorema de Liouville f é constante no plano.

Em face deste resultado, para obter exemplos não triviais de funções duplamente periódicas será necessário considerar funções com pontos singulares.

É o que vamos agora fazer, começando por adaptar a noção do período a esta nova situação.

Definição 5. Diz-se que TeC é um período de uma função f que admite pontos

singulares quando

$$f(z) = f(z + T)$$

para todo o ponto regular z de f.

TEOREMA 12. Seja f uma função meromorfa. O conjunto G dos seus períodos forma um grupo fechado de C.

Demonstração. 1) G é um grupo.

Sejam $T_1, T_2 \in G$ e z um ponto regular de f.

Como $z + T_1$ é ponto regular e T_1, T_2 são períodos, vem

$$f(z + T_1 + T_2) = f((z + T_1) + T_2) =$$

$$= f(z + T_1) = f(z),$$

logo $T_1 + T_2 \in G$.

Seja agora Te G e mostremos que -Te G. Por hipótese f(z+T)=f(z) para tal ponto regular z.

Se z-T não fosse regular, seria um polo e portanto para qualquer sucessão $z_n \rightarrow z$ teríamos

$$\infty = \lim_{n} |f(z_{n} - T)| = \lim_{n} |f(z_{n} - T + T)| = \lim_{n} |f(z_{n})| = |f(z)|,$$

o que é absurdo.

2) G é fechado. Seja $T = \lim_{n \to \infty} T_n$, $T_n \in G$ e z regular.

Se z + T for regular vem imediatamente (pela continuidade de f em z + T)

$$f(z+T)=f(\lim (z+T_n))=\lim_n f(z+T_n)=f(z).$$

Se
$$z + T$$
 não fosse regular, então $\infty = \lim |f(z + T_n)| = \lim f(z) = f(z)$,

para z regular, o que é impossível.

Nota. Se f admite tamb'em pontos singulares essenciais, a demonstração de que G é um grupo continua válida, mas fica em aberto o problema de G ser fechado, pois podem existir sucessões $(z+T'_n)$ ao longo das quais $f(z+T'_n) \rightarrow f(z)$ e isso impossibilita o raciocínio por absurdo anteriormente feito.

DEFINIÇÃO 5. Diz-se função elíptica uma função meromorfa e duplamente periódica.

Quase grupos subtractivos

por Jayme Machado Cardoso*

Instituto de Matemática da Universidade do Paraná

Introdução

Um grupoide é um par constituido por um conjunto não vazio G e uma lei de composição interna $G \times G \to G$. Um grupoide G diz-se quase grupo se, quaisquer que sejam $a,b \in G$, existem, em G, soluções para as equações

$$ax = b$$
 θ $ya = b$

e tais soluções são únicas.

* Com os agradecimentos ao Prof. J. Morgado, por correcções feitas no texto. Os grupoides associativos denominam-se semigrupos.

Uma parte S de um grupoide G denomina-se subgrupoide de G se for, também, grupoide relativamente à composição definida em G. Eventualmente um subgrupoide pode apresentar estrutura de semigrupo, de quase grupo ou, mesmo, de grupo (ver exemplo E 3 abaixo).

Ordem de um grupoide finito é o número de seus elementos.

Chama-se classe lateral à esquerda (classe lateral à direita) de um subgrupoide S de