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1. It is well known that, if G is a finite
group (multiplicatively written), then each
element of G has a square root, if and only
if the order of G is odd ([1], Theorem 1,
and [2]).

Recently, we have obtained a characteri-
zation of the groups which admit a Jacon:
automorphism. We have stated that a group
G has at most one Jacosr automorphism,
and that such an antomorphism exists, if and
only if G is an abelian group having the
unique square root property (i. e., for each
element =€ G', there is exactly one element
y e G satisfying the condition 3?2 = z).

In this note we obtain some results about

the abelian groups having the unique square
root property.

2. Let us state the following

Lemma 1. If x is an element of odd order
of a group G and y is a square root of x,
then one has either ordy =ordx or ordy =
=2.o0rdx.

Proor. Indeed, let ordx=2n—1. Since
y2 =, one has

y2@n-0 — g2n-1—=1

and so y is an element of finite order.

If ordy is odd, say 2m —1, then one
has (2m —1)|2(2n —1), hence

@em—1)|Cn—-1).
On the other hand, one has
Z2m-1 = y2@m-1) = 1
and so 2n—1)|Cm—1).
Consequently, ordy = ord .

If ordy is even, say 2m,
y? =, it follows

then from

y2(2ﬂ*“ — ¢2ﬂ-|= 1= yﬂﬂl = g™ i

meaning that 2m|2(2n—1) and (2n—1)|m,
hence ordy =2 .ordx, as wanted.

Leuuma 2. If x is an element of odd order
of a group G, then there is exactly one
element y e G such that

y2=x and ordy = ordx

and this element y belongs to the cyclic sub-
group generated by x .

Proor. Let ordz=2n-—1. Then, since
("2 =228~ .z =@

one sees that 2" is a square root of @ and
obviously z" belongs to the cyelic subgroup
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generated by = . Moreover, if 72 =ax and
ordy = ordx, then

= y?(ﬂﬂ—l)-l-l = (mu)ﬂ(ﬁn—lfl-!-l =a",
proving the lemma.

TaEOREM 1. If T is the set af all elements
of odd order of an abelian group G, then T
is a subgroup of G having the unique square
root property.

Proor. The set 7' is clearly non void,
since 1€ 7. Moreover, since ord(a-1)=orda
and ord(ab)=orda-ordb for all a,b in
T, on sees that 7' is a subgroup of G'. By
Lemma 2, for each ae 7 there is exactly
one element 2 such that 2? = a and ordax=
= ord a and this element belongs to the cyclic
subgroup generated by a, hence xe 7.

If ordx=~orda, then, by Lemma 1, one
has ordx=2.orda and so « does not
belong to 7.

3. If G is a torsion free abelian group
such that for each element ae G there is
some « satisfying the condition 2= a, then
G' has the unigue square root property. In
fact, if 22 =32 =a with y=£=r, then
(y'2=x2(y12=a-a!'=1, contradicting
the hypothesis that G is torsion free.

Let G' be a group with the unique square
root property. Then, there his no element a in
G with even order. In fact, from ordx=2m
it follows (#™)2 =1 and so 1 and 2"-=£1
would be square roots of 1, against the
hypothesis. Thus, the set 7" formed by all
elements in G having odd order is the ma-
ximal torsion subgroup of G and, therefore,
the quotient group G/T is torsion free. If
aTleG|T and x? =a, then it is immediate
that (®7)2=aT.

Consequently, the following holds :

Taeorem 2: If G 3 an abelian group
with the unique square root property and T

s the set of all elements in G having odd
order, then G/T s a torsion free abelian
group with the unique square root property.

4. Now, let I be a torsion free abelian
group having the unique square root pro-
perty. We shall denote by @12 the (unique)
square root of @. More generally, we shall

denote by 2"*" m and = integers, the
square root of /""",

This notation is consistent, since
2™ w2 — o m2" 4 m

Let ae H. It is immediate that the least
subgroup of H containing a and having the
unique square root property is the set of all
elements a”, where r is either O or a ra-

tional number of the form —'—'-—1--, where

m and n are integers.

Let us denote this group by S(a). It is
immediate that this group is isomorphic to
the additive group whose elements are 0O
and the rational numbers of the form 2ok 5

2n

with m and n integers.

TueoreMm 3. For each aeH, the lattice
of all subgroups of the group 8 (a) is distri-
butive.

Proor. Indeed, as it was stated by
Ore [4], the lattice of all subgroups of a
group is distributive, if and only if the group
is locally cyclic.

Let us see that the group S(a) is locally
cyclie, that is to say, if 2,ye S(a), say

2 = q@m+1)/2" gnd y = alr+D/2

then there is some ze §(a) such that = and
y belong to the eyclic subgroup generated
by z. It is sufficient to set z = al/2”, where
p is the greatest of the integers » and s.
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TaeoreMm 4. For each aeH, the lattice
of all subgroups of S(a) having the unique
square root property, is isomorphic to the lat-
tice constituted by the set of all positive odd
integers partially ordered by the relation m=n
if and only if m s divisible by n .

Proor. Let 4 be a subgroup of S(a)
having the unique square root property. If
a@m+1i2"¢ 4, then a?™+! and a-@=+1 be-
long to A. Let 2p + 1 be the least posi-
tive integer such that a2?+l1e A. Then, if
xe A, one has x = a®»+1)2e4+1I2" for some
integers ¢ and =,

This means that 4 = S(a22+1),

Thus, one sees that there is a one-one cor-
respondence between the set of all subgroups
of S(a) having the unique square root pro-
perty and the set of all positive odd integers.

Moreover, one has clearly

S (a2m+1) € g(a27+1)
if and only if
Cp+1)|@Em+1),

completing the proof.
The group /I may be considered as a
module over the ring R formed by all ra-

2m +1

tional numbers O, ,m and = inte-

gers, relatively to the ordinary addition and
multiplication. The set S(a) the cyclic sub-
module generated by a.

The theorem 4 above says that the lattice
of all submodules of 8 (a) is isomorphic to the
lattice of all positive odd integers, m=n
meaning that n divides m.

5. Foreach ae H, let us denote by C'(a)
the cyclic subgroup generated by a.

Let us consider the quotient group S(a)/
| C(a) and let a®@m+1/2" be any element of
S(a). If =1, by the division algorithm,
one has

2m+1=2".q¢+(2r+1), with 0<27r41<2n

g and r integers.
From this it follows

(1 2m2j~1 =g+2r2~j~ 1_’
with 0<2r 4 1<2n
and hence
a@m+1)/2" — ga.q@r+1)/2" gq@r+1|2" C(a)

5]
If n<1, then ek St
9n

is an integer and
80 a(2m+l)l'2" e C(a) .

Thus, the elements of the group S(a)/C(a)
are C(a) and the cosets of the form

a@r+ /2" C(a)

where n is a positive integer and r is an
integer such that 0<2r 4 1 <22,

Let us consider the group Z(2%) ([5], p. 4).
The elements of the group Z(2%) are

R s e RS

3. 3 13 21‘—!—1_
’2’4’4’8’8""

2n

) §oeain
with 0<2r + 1<2", the group operation
being the addition modulo one.

Since the integers ¢ and r in (1) are uni-
quely determined, one concludes the fol-
lowing

THEOREM D. For each aeH, the quotient
group S(a)/C(a) is isomorphic to the group
Z(2%)
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