is idempotent. Let trA denote the trace of A. Then (1) gives

$$tr A_i = tr \operatorname{diag}(1, \dots, 1, 0, \dots, 0) = n_i$$
.

On the other hand we have $trE = \sum_{i=1}^{m} trA_i$

and so
$$n = \sum_{i=1}^{m} n_i$$
.

We show now that b) implies c). This has been proved by DJOKOVIC, LANGFORD and others (see [3], where a stronger result due to R. C. THOMPSON is mentioned). For the sake of completeness we repeat a proof here.

Let $x_1^{(i)}, \dots, x_{n_i}^{(i)}$ be a basis for the range of A_i . Let x be any n dimensional vector. We have

$$x = E x = \sum_{i=1}^{m} A_i x$$

which proves that any x can be expressed as a linear combination of the vectors

$$x_1^{(i)}, \dots, x_{n_i}^{(i)} \ (i = 1, \dots, m)$$
. As $\sum_{i=1}^m n_i = n$,

the number of these vectors is exactly n and so they must be linearly independent. It follows that any x can be expressed uni-

quely in the form $x = \sum_{i=1}^{m} x_i$ with x_i belon-

ging to the range of A_i , namely $x_i = A_i x$. Therefore $A_j A_i x = 0$ $(i \neq j, x$ arbitrary) and so $A_j A_i = 0$ $(i \neq j)$.

Finally we show that c) implies a).

Multiplying
$$\sum_{i=1}^{m} A_i = E$$
 by A_j we get

$$A_j^2 = A_j$$
 and the proof is complete

REFERENCES

- [1] Bellman, Introduction to Matrix Analysis, McGraw — Hill, New York, (1960).
- [2] Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, (1960).
- [3] Kestelman, A generalization of Cochran's Theorem. The Am. Math. Monthly, 75, N.º 3 (1968), p. 301-303.

Sôbre os teoremas de Zorn, de Zermelo e de Bernstein-Cantor

por Constantino M. de Barros Instituto de Matemática da Universidade Federal Fluminense, Brasil

Os teoremas referidos acima são deduzidos fâcilmente de um bem conhecido lema que assegura a existência de partes bem ordenadas compatíveis com uma função dada. De passagem dá-se uma demonstração simplificada dêsse lema.

1. Sejam E e F conjuntos. Uma relação univoca de E para F é um subconjunto f

do produto cartesiano $E \times F$ tal que se (x,y),(x',y') e f e x=x', então y=y'. Diz-se que f é uma função de E para F se f é uma relação unívoca de E para F verificando a seguinte condição suplementar: para todo x e E existe pelo menos um y e F tal que (x,y) e f. Se f é uma função de E para F, então para todo x e E existe um único elemento de F, indicado por

f(x), tal que (x, f(x)) e f. Uma aplicação é um terno (F, f, E) tal que f seja uma função de E para F. Uma função f de E para F, resp. uma aplicação (F, f, E), é dita bijetiva se para todo $g \in F$ existe um único elemento $g \in E$ tal que g = f(x).

Diz-se que \leq é uma relação de ordem sôbre o conjunto E se \leq é um subconjunto de $E \times E$ satisfazendo os três seguintes axiomas:

- (R01) Se $x \in E$, então $x \leq x$;
- (R02) Se $x \leq y$ e $y \leq z$, então $x \leq z$;
- (R 03) Se $x \leq y$ e $y \leq x$, então $x \leq y$;

onde $x \leq y$ significa $(x, y) \in \leq$.

Seja (E, \leq) um sistema ordenado, isto é, \leq é uma relação de ordem sôbre E. Para cada $x \in E$ põe-se

$$\Lambda_x =] \leftarrow , x] = |w| w \in E \text{ e } w \leq x|.$$

Por Λ indica-se a função de E para $\beta(E)$ tal que $\Lambda(x) = \Lambda_x$ se $x \in E$. Por $\beta(E)$ nota-se o conjunto formado por todas as partes de E.

Proposição 1. Se \leq é uma relação de ordem sôbre E, então existe uma única função Λ de E para $\beta(E)$ tal que

- (F01) Se $x \in E$, então $x \in \Lambda_x$, onde $\Lambda_x = \Lambda(x)$;
- (F 02) Se $(x, y) \in E \times E$ e $x \in \Lambda_y$, então $\Lambda_x \subset \Lambda_y$;
- (F03) Se (x, y) e $E \times E$ e $\Lambda_x = \Lambda_y$, então x = y;
- (F04) Se $(x, y) \in E \times E$, então $x \leq y$ se, e sòmente se $x \in \Lambda_y$.

Reciprocamente, se Λ é uma função de E para $\beta(E)$ satisfazendo (F01), (F02) e (F03), então existe uma única relação de ordem \leq sôbre E tal que $\Lambda(x) = \Lambda_x =$ $=] \leftarrow , x]$ para todo $x \in E$.

Seja a e E. Diz-se que a é maximal se o conjunto $|x| x \in E$ e $\alpha < x$ é vazio. Seja $X \subset E$. Diz-se que a é uma cota superior (resp. inferior) de X se $x \leq a$ (resp. $a \leq x$) para todo x e X. Diz-se que a é primeiro elemento de X se a e X e a é cota inferior de X. Indica-se por X+ o conjunto das cotas superiores de X. Designa-se por Pri a relação únivoca de $\beta(E)$ para E tal que (X, a) e Pri se, e sòmente se a é primeiro elemento de X. Diz-se que X possui primeiro elemento se existe a e E tal que (X, a) e Pri. Indica-se por Sup a relação unívoca de $\beta(E)$ para E tal que (X,a)e Sup se, e só se (X^+,a) e Pri. Diz-se que X admite supremo se existe se E tal que $(X,s) \in Sup$. So X admite supremo indica--se por Sup X o elemento de E tal que $(X, \operatorname{Sup} X) \in \operatorname{Sup} \ e \ \operatorname{diz-se} \ \operatorname{que} \ \operatorname{Sup} X \ \acute{\mathrm{e}} \ \mathrm{o}$ supremo de X.

Seja K um subconjunto de E. Diz-se que K é bem ordenado (por \leq) se todo o subconjunto X de K possui primeiro elemento. Portanto K é bem ordenado se, e só se para todo $X \subset K$ existe $w \in X$ tal que $w \in \bigcap \Lambda_x$.

Diz-se que (E, \leq) é bem ordenado se E é bem ordenado por \leq .

Por $\beta_*(E)$ indica-se a coleção constituida por todas as partes não vazias de E. Uma função escolha sôbre E é uma função σ de $\beta_*(E)$ para E tal que $\sigma(X) \in X$ para todo $X \in \beta_*(E)$.

2. Seja (E, f, \leq) tal que (E, f, E) seja uma aplicação e (E, \leq) seja um sistema ordenado.

LEMA 1. Se (x, a) e E × E verifica

- (Cf) $x \leq a$ ou $f(a) \leq x$,
- então (x, a) verifica também a eondição:
 - (N!) se a < x, então $f(a) \leq x$.

Se além do mais a \(\le f(a), então

(C) a < x ou $x \le a$.

Reciprocamente, se um par $(x, a) \in E \times E$ verifica (N^t) e (C), então (x, a) satisfaz (C^t) .

DEMONSTRAÇÃO. $(C^f) \Rightarrow (N^f)$. Se a < x, então. $x \nleq a$, logo $f(a) \leq x$ por (C^f) .

 $(C') \Rightarrow (C)$. De facto, se $x \nleq a$, então $a \leq f(a) \leq x$. A recíproca é trivial.

Lema 2. Se $(x, a) \in E \times E$ satisfaz a condição (C^r) , e se $x \leq f(x)$, então (f(x), a) também sattisfaz (C^r) .

DEMONSTRAÇÃO. Se x < a, então $f(x) \le a$ pelo lema 1. Se x = a, então $f(a) \le f(x)$. Se $f(a) \le x$, então $f(a) \le x \le f(x)$. Logo $f(x) \le a$ ou $f(a) \le f(x)$.

Seja K uma parte de E. Para cada subconjunto A de K se escreverá

 $C_K^f A = \{x \mid x \in K \text{ e se } a \in A, \text{ então } x \leq a \text{ ou } f(a) \leq x\},$

 $\overrightarrow{C_K}A = |x| x \in K \text{ e se } a \in A, \text{ então } x \leq a$ ou $a \leq x|,$

 $N_K^f A = \{x \mid x \in K \text{ e se } a \in A \text{ e } a < x, \text{ então } f(a) \angle x\}.$

Tem-se

 $C_K^f A = K \cap C_E^f A$ e $N_K^f A = K \cap N_E^f A$.

Do lema 1 resulta: $C_K^f A \subset N_K^f A \cap C_K A$. Se além do mais $a \leq f(a)$ para todo $a \in A$, então $C_K^f A = N_K^f A \cap C_K A$.

LEMA 3. Se A C K C E, então

- (C1) Se w é primeiro elemento de K, então w e CK;
- (C1) Se $B \subset C_K^f A$, se B admite supremo e se (Sup B) e K, então (Sup B) e $C_K^f A$.

DEMONSTRAÇÃO de (C2). De fato, seja $a \in K$. Se a é uma cota superior de B, então (Sup B) $\leq a$. Se a não é cota superior de B, então existe $x \in B$ tal que $x \nleq a$, logo $f(a) \leq x$. Portanto $f(a) \leq x \leq \operatorname{Sup} B$. Consequentemente (Sup B) $\leq a$ ou $f(a) \leq x \leq \operatorname{Sup} B$. Logo (Sup B) $\in C_K^f A$.

Uma parte K de E será dita uma corrente em w se (K, w) satisfazer os três axiomas seguintes:

- (C1) $f(K) \subset K$;
- (C2) $w \in K$;
- (C3) Se $A \subset K$ e se A admite supremo, então (Sup A) e K.

Se além do mais (K, w) satisfizer

(C4) Se $x \in K$, então $w \leq x$,

diz-se que K é uma corrente de origem w. Para todo $w \in E$ tem-se: (i) E é uma corrente em w; (ii) a interseção de todas as correntes em w é uma corrente em w.

Por K[w] indica-se a interseção de todas as correntes em w e K[w] será dita a a corrente gerada por w.

Da definição de K[w] resulta o seguinte princípio de indução: se $X \subset E$ e se $K[w] \cap X$ é uma corrente em w, então $K[w] \subset X$.

Diz-se que (E, f, \leq) é uma dilatação se (E, \leq) é um sistema ordenado e f é uma função de E para E tal que

(D) Se $x \in E$, então $x \leq f(x)$;

ou equivalentemente

($\widetilde{\mathbf{D}}$) So $w \in E$, então $[w, \to [= |x| x \in E$ e $w \le x|$ é uma corrente em w.

Se (E,f, \leq) é uma dilatação e $w \in E$, então $K[w] \subset [w, \rightarrow [$, logo w é primeiro elemento de K[w]. Portanto K[w] é uma corrente de origem w.

Lema 4. Seja (E, f, \leq) é uma dilatação Se $w \in E$ e se $K[w] \subset N^rK[w]$, então K[w] é uma parte bem ordenada de (E, \leq) .

DEMONSTRAÇÃO. Seja $X \subset K[w]$ tal que $X \neq \emptyset$, onde \emptyset é o conjunto vazio. Suponhamos que X não possui primeiro elemento. Então $X^- \cap X = \emptyset$, onde X^- é a parte de E formada por todas as cotas inferiores de X.

- (a) Seja $a \in X^-$, então a < x para todo $x \in X$, logo $f(a) \leq x$ para todo $x \in X$. Consequentemente $f(a) \in X^-$.
- (b) $w \in X^-$ visto que $w \in X$ o primeiro elemento de K[w].
- (c) Seja $A \subset X$ tal que A admita supremo. Então para todo $x \in X$ se tem $(\operatorname{Sup} A) \leq x$. Logo $(\operatorname{Sup} A) \in X^-$.

De (a), (b) e (c) resulta que $X^- = K[w]$, logo $X = \emptyset$, o que é absurdo.

Lema 5. Se (E, f, \leq) é uma dilatação, então $K[w] \subset C^r K[w]$.

DEMONSTRAÇÃO. Em virtude dos lemas 2 e 3 se $a \in K[w]$, então o conjunto $(K[w])_a = |x|x \in K[w]$, $x \leq a$ ou $f(a) \leq x$ ó uma corrente em w. Portanto $K[w] = (K[w])_a$.

Dos lemas 4 e 5 e do fato de $C^fK[w] \subset N^fK[w]$ resulta

Proposição 2. Se $(E, f, \underline{\mathscr{L}})$ é uma dilatação e se $w \in E$, então K[w] é uma parte bem ordenada de E. Além do mais w é o primeiro elemento de K[w] e $f(m) = m \in K[w]$ se K[w] admite supremo e $m = \operatorname{Sup} K[w]$.

COROLÁRIO 1 (do ponto fixo para dilatações). Se (E, f, \leq) é uma dilatação e se tôda parte bem ordenada de E admite supremo, então para cada $w \in E$ existe $m \in E$ tal que $w \leq m$ e f(m) = m.

3. TEOREMA DE ZORN (1.ª forma). Seja (E, ∠) um sistema ordenado tal que tôda parte bem ordenada de E admite supremo. Então para todo w e E existe um elemento maximal m e E tal que w ∠ m.

Demonstração. Seja f a função de E para E definida pela formula:

$$f(x) = \begin{cases} x & \text{se } x \text{ \'e maximal,} \\ \sigma(]x, \to [) & \text{se } x \text{ n\'ao \'e maximal,} \end{cases}$$

onde σ é uma função escolha sôbre E. O teorema resulta do corolário 1.

4. Seja σ uma função escolha sôbre E. Indica-se por $\hat{\sigma}$ a função de $\beta(E)$ para $\beta(E)$ definida pela seguinte formula: se $X \subset E$, então

$$\hat{\sigma}(X) = \begin{cases} E \text{ se } X = E, \\ X \bigcup |\sigma(E - X)| \text{ se } X \neq E, \end{cases}$$

onde $E-X=\{w\,|\,w\in E\ e\ w\notin X\}$. Tem-se que $(\beta(E),\hat{\sigma},\subset)$ é uma dilatação Seja $K_{\sigma}[\phi]$ a corrente gerada pelo conjunto vazio. Por K_{σ}^* se indicará o conjunto $K_{\sigma}[\phi]--\{E\}$. Se $x\in E$, por Λ_x^* se indicara a reunião de todos os conjuntos $Y\in K_x^*$ tais que $x\notin Y$. Em virtude de definição de Λ_x^* resulta:

 $(\mathbf{0}_{\sigma}^*)$ Se $Y \in K_{\sigma}^*$, então $x \notin Y$ se, e só se $Y \subset \Lambda_x^*$.

Proposição 3. Para todo $x \in E$ existe um único subconjunto de E, indicado por Λ_x^* , tal que

- (I*1) $\Lambda_x^* \in K_a^*$;
- (I*2) $x \notin \Lambda_x^*$;
- $(I*3) \quad \sigma(E-\Lambda_x^*)=x.$

Além do mais se $Y \in K_{\sigma}^*$, então $Y = \Lambda_{\sigma(E-Y)}^*$.

Demonstração. As propriedades (I* 1) e (I* 2) são consequências da caracterização de Λ_x^* por intermédio de (O_σ^*) e de definição de $K_\sigma[\phi]$. Resta mostrar apenas (I* 3). Se $\Lambda_x^* \cup \{\sigma(E - \Lambda_x^*)\} = E$, então $x = \sigma(E - \Lambda_x^*)$ pois $x \notin \Lambda_x^*$. Se $\hat{\sigma}(\Lambda_x^*) \in K_\sigma^*$ e $x \notin \hat{\sigma}(\Lambda_x^*)$, então $\hat{\sigma}(\Lambda_x^*) \subset \Lambda_x^*$, em virtude da definição de Λ_x^* ; logo $\sigma(E - \Lambda_x^*) \in \Lambda_x^*$ o que é absurdo.

Seja Y tal que $Y \in K_{\sigma}^*$, $x \notin Y \in \sigma(E-Y) = x$. Da definição de Λ_x^* e de (I^*2) resulta que $Y \subset \Lambda_x^*$. Se $Y \neq \Lambda_x^*$, de (I^*1) e do lemma 1 resulta que $\hat{\sigma}(Y) \subset \Lambda_x^*$, logo $\sigma(E-Y) \in \Lambda_x^*$, portanto $\sigma(E-Y) \neq x$ pois $x \notin \Lambda_{\sigma}^*$, porém isto contraria a hipótese $\sigma(E-Y) = x$, logo $Y = \Lambda_x^*$.

Se $Y \in K_{\sigma}^*$ e se $x = \sigma(E - Y)$, então $x \in Y$, logo $Y = \Lambda_x^*$ pela unicidade.

Corolário 2. Se $x, y \in E$, então

- $(\tilde{\mathcal{O}}_{\sigma}^*)$ $x \notin \Lambda_y^*$ se, e só se $\Lambda_y^* \subset \Lambda_x^*$,
- (O_{σ}) $x \in \Lambda_y$ se, e só se $\Lambda_x \subset \Lambda_y$,

onde $\Lambda_x = \Lambda_x^* \cup \{x\}$.

COROLÁRIO 3. Seja σ uma função escolha sôbre E. Se σ^* é a função de K_{σ}^* para E tal que $\sigma^*(Y) = \sigma(E-Y)$ se YeK_{σ}^* e Λ^* é a função de E para K_{σ}^* tal que $\Lambda^*(x) = \Lambda_{\sigma}^*$ se $x \in E$, então σ^* é bijetiva e Λ^* é a inversa de σ^* , isto é, $\sigma^*\Lambda^*(x) = x$ se $x \in E$ e $\Lambda^*\sigma^*(Y) = Y$ se YeK_{σ}^* .

TEOREMA DE ZERMELO. Seja σ uma função escolha sobre E. Então existe uma única relação de boa ordem \leq sobre E tal que: (i) K_{σ}^* é o conjunto cujos elementos são da forma]+,x[, onde $x \in E$; ou (ii) $\sigma(E-[\leftarrow +,x[)=x$ para todo $x \in E$. Além do mais $\Lambda^*(x)=]\leftarrow,x[$ para todo $x \in E$, $\sigma(E-Y)$ é o primeiro elemento de E-Y se $Y \in K_{\sigma}^*$ e $\Lambda_{\sigma(E)}^*=\emptyset$.

DEMONSTRAÇÃO. Pondo-se x < y se $(x,y) \in E \times E$ e $\Lambda_x^* \subset \Lambda_y^*$, de Λ^* ser bi-

jetiva resulta que \leq é uma relação de boa ordem sôbre E.

A unicidade é consequência do lema 6 abaixo aplicado à $K = K_{\sigma}[\phi]$ e à

$$K' = \Lambda^*(\emptyset) \cup \{E\} \text{ em } (\beta(E), \hat{\sigma}, \subset).$$

LEMA 6. Seja (E, <u>)</u> um sistema ordenado tal que toda a parte bem ordenada admita supremo. Seja f uma função de E para E. Se weE, então existe no máximo um subconjunto K de E tal que

- (1) K é uma corrente de origem em w.
- (2) Se $x \in K$, então $x \leq f(x)$; se $(x,y) \in K \times K$ e $x \leq y \leq f(x)$, então x=y ou y = f(x);
 - (3) K é bem ordenado;
- (4) Se $p \in K$ e p = f(p), então $x \leq p$ para todo $x \in K$.

Se além do mais $x \leq f(x)$ para todo $x \in E$, então K[w] é a única parte de E verificando as condições (1), (2), (3) e (4) acima.

Demonstração. Seja K' uma outra corrente de origem w. Tem-se $K \subset K'$. De fato, em caso contrário $K-K' \neq \emptyset$. Nêste caso seja q o primeiro elemento de K-K', o qual existe visto que K é bem ordenado. Seja $\Lambda_q^*(K) = \{x \in K \text{ e } x < q\}$. Da definição de q resulta $\Lambda_q^*(K) \subset K \cap K'$. Seja $s = \operatorname{Sup} \Lambda_q^*(K)$. Das duas uma: s < q ou s = q.

Caso 1. Seja s < q. Como s < q < f(s) é impossível, então $f(s) \leq q$, pois q, $f(s) \in K$ e K é bem ordenado. Ora f(s) < q implica f(s) = s em virtude da definição de s e de (2). Se f(s) = q, então $q = f(s) \in K'$, pois $s \in K'$, o que também é absurdo pois $q \in K - K'$.

Caso 2. Seja s = q. Ora $\Lambda_q^*(K) \subset K'$ e K' é uma corrente, logo $q \in K'$, pois q = s, mas $q \in K - K'$. Portanto êste segundo caso é impossível.

Consequêntemente $K - K' = \emptyset$. Portanto $K \subset K'$. Pelas mesmas razões $K' \subset K$.

Das proposições 1, 2 e do lema 5 resulta que K = K[w] satisfaz (1), (2) e (3). Resta apenas demonstrar (4). Se $p \in K[w]$ e p = f(p), então [w, p] é uma corrente em w, logo $K[w] \subset [w, p]$.

- 5. Diz-se que (E, f, \angle) é um sistema crescente se (E, \angle) é um sistema ordenado e f é uma função de E para E tal que
 - (FC) Se (x,y) e $E \times E$ e $x \leq y$, então $f(x) \leq f(y)$.

LEMA 7 (do ponto fixo para funções crescentes). Se (E, f, \leq) é um sistema crescente e toda parte bem ordenada de E admite supremo, então existe m e E tal que m = f(m).

DEMONSTRAÇÃO. Seja $W = |x| x \in E$ e $x \leq f(x)|$. O conjunto W é uma corrente de origem $O = \operatorname{Sup} \emptyset$. Aplicando o corolário 1 à (W, f_W, \leq_W) , onde $f_W(x) = f(x)$ para todo $x \in E$ e $\leq_W = (W \times W) \cap \leq_N$ resulta que existe um elemento $m \in W$ tal que m = f(m).

TEOREMA DE BERNSTEIN-CANTOR. Sejam (F,g,E) e (E,h,F) aplicações injetivas, i. e., se $x,x' \in E$, se $y,y' \in F$ e se g(x) = g(x') e h(y) = h(y'), então x = x' e y = y'. Então existe uma função bijetiva f de E para F.

DEMONSTRAÇÃO. Seja θ a função de $\beta(E)$ para $\beta(E)$ tal que para todo $X \in \beta(E)$ se tenha $\theta(X) = C(h(C(g(X))))$, onde C(Y) = E - Y se $Y \subset E$. O terno $(\beta(E), \theta, \subset)$ θ um sistema crescente. Pelo lema 7 existe um elemento $E_1 \in \beta(E)$ tal que $\theta(E_1) = E_1$. Seja $F_1 = g(E_1)$; então $C(E_1) = h(C(F_1))$. Seja f a função de E para F tal que para todo $x \in E$ se tenha f(x) = g(x) se $x \in E_1$ e h(f(x)) = x se $x \in C(E_1)$. Da definição

de f e do fato de g e h serem injetivas decorre que f é bijetiva.

6. Nas demonstrações acima, dadas para os teoremas de Zorn, de Zermelo e de Bernstein-Cantor usou-se fragmento (proposição 2 e lemas 6, 7) do seguinte resultado básico:

TEOREMA DA EXTRAÇÃO DE PARTES BEM ORDENADAS E DO PONTO FIXO. Seja (E,f,) uma dilatação ou um sistema crescente. Se tôda parte bem ordenada de E admite supremo, então existe uma única parte de E, indicada por K, tal que (K, w) verifica as condições (1), (2), (3) e (4) do lema 6, onde w=Sup \(\phi \). Além do mais f(Sup K) = Sup K.

7. Seja (E, \angle) um sistema ordenado. Seja X um subconjunto de E. Diz-se que X é

(t. o.) totalmente ardenado se para todo (x, x') e $X \times X$ se tenha $x \leq x'$ ou $x' \leq x$: (p. b. o.) parcialmente bem ordenado se tôda parte totalmente ordenada não vazia contida em X possui primeiro elemento;

(f. d.) filtrante (à direita) se para todo $(x', x'') \in (X \times X)$ existe um elemento $x \in X$ tal que $x' \leq x$ e $x'' \leq x$.

Por X^{\ddagger} indica-se o subconjunto de E constituido por todos os elementos $y \in E$ tais que $y \lessdot x$ para todo $x \in X$. Tem-se $X^{+} \subset X^{\ddagger}$.

Por \subset^{\ddagger} , (resp. \subset^{+}) indica-se a relação de ordem sôbre $\beta(E)$ definida do seguinte modo:

 $X \subset^{\#} Y$ se, e só se $X \subset Y$ e $Y - X \subset X^{\#}$.

(resp. $X \subset^+ Y$ se, e só se $X \subset Y$ e $Y = X \subset X^+$).

A relação de ordem $\subset^{\#}$ (resp. \subset^{+}) será chamada a (#)-inclusão (resp. (#)-inclusão) associada à $(E, \underline{\swarrow})$.

Proposição 4. Seja & um conjunto cujos elementos são partes de E. Se & é filtrante pela (#)-inclusão (resp. pela (+)-inclusão), então & admite supremo com respeito à

= (resp. = +) e

$$\sup_{\#} \mathcal{F} = (\bigcup \mathcal{F}) \qquad (\text{resp. } \sup_{+} \mathcal{F} = (\bigcup \mathcal{F})),$$

onde Sup F (resp. Sup F) indica o supremo

#

de F com respeito à (#)-inclusão (resp.
(#)-inclusão).

Demonstração. Seja $X = \bigcup \mathcal{F}$.

- (a) Tem-se $X_{\alpha} \subset^{\ddagger} X$ para todo $X_{\alpha} \in \mathcal{F}$. De facto, seja $w \in X X_{\alpha}$, então existe $X_{\beta} \in \mathcal{F}$ tal que $w \in X_{\beta}$, porém \mathcal{F} é filtrante pela (#)-inclusão, logo existe $X_{\gamma} \in \mathcal{F}$ tal que $X_{\alpha} \subset^{\ddagger} X_{\gamma}$ e $w \in X_{\gamma} X_{\alpha}$. Conseqüêntemente $w \in X_{\alpha}^{\ddagger}$, portanto $X_{\alpha} \subset^{\ddagger} X$.

 (b) Seja W uma parte de E tal que
- (b) Seja W uma parte de E tal que $X_{\alpha} \subset^{\#} W$ para todo $X_{\alpha} \in \mathscr{F}$. Seja w um elemento de W X; para todo $X_{\alpha} \in \mathscr{F}$ se tem: $w \in W X_{\alpha}$, logo $w \in X_{\alpha}^{\#}$, portanto $w \in X^{\#}$. Conseqüêntemente $X \subset^{\#} W$.

Lema 8. Seja \(\varphi\) um coniunto cujos elementos s\(\text{do}\) partes parcialmente bem ordenadas (resp. totalmente ordenadas) de \(\varphi\) niclus\(\text{do}\), se \(\varphi\) éfiltrante pela (\(\pm\))-inclus\(\text{do}\), ent\(\text{do}\)
(\(\pm\) \(\varphi\) \(\varphi\) sup\(\varphi\) e Sup\(\varphi\) é parcialmente bem \(\pm\) # ordenado (resp. totalmente ordenado).

Demonstração. Em virtude da proposição 4 resta apenas mostrar que $(\bigcup \mathcal{F})$ é parcialmente bem ordenado (resp. totalmente ordenado). Seja $X = (\bigcup \mathcal{F})$. Seja H uma

parte totalmente ordenada não vazia de E e tal que $H \subset X$. Existe $X_{\alpha} \in \mathcal{F}$ tal que $H \cap X_{\alpha} \neq \emptyset$. Seja α o primeiro elemento $H \cap X_{\alpha}$. Tem-se que α é também primeiro elemento de H. Com efeito, para todo $x \in H$ existe $X_{\beta} \in \mathcal{F}$ tal que $X_{\alpha} \subset^{\#} X_{\beta}$ e $x \in X_{\beta}$, pois \mathcal{F} é filtrante pela (#)-inclusão. Das duas uma: $x \in X_{\alpha}$ ou $x \in X_{\beta} - X_{\alpha}$. Se $x \in X_{\alpha}$, então $\alpha \leq x$. Se $x \in X_{\beta} - X_{\alpha}$, então $x \leqslant \alpha$ pois $X_{\alpha} \subset^{\#} X_{\beta}$, portanto $\alpha \leq x$, pois α , $x \in H$ e H é totalmente ordenado.

COROLÁRIO 4. Seja \mathcal{F} um conjunto cujos elementos são partes bem ordenadas de E munido de \leq . Se \mathcal{F} é filtrante pela (+)-inclusão, então $(U\mathcal{F}) = \sup_{+} \mathcal{F}$ e $\sup_{+} \mathcal{F}$ é uma parte bem ordenado de E.

8. TEOREMA DE ZORN (2.ª forma). Seja (E, ∠) um sistema ordenado tal que tôda parte bem ordenada de E possui uma cota superior. Então para todo w e E existe um elemento maximal m e E tal que w ∠ m.

DEMONSTRAÇÃO. Seja \mathscr{X}_w o conjunto formado por tôdas as partes bem ordenadas de E que têm w por cota inferior. Do corolário 4 resulta que \mathscr{X}_w munido de \subset + satisfaz a seguinte condição: se $\mathscr{F} \subset \mathscr{X}_w$ e \mathscr{F} é bem ordenado pela (+)-inclusão, então $X = \sup_{+} \mathscr{F} \in \mathscr{X}_w$. Da 1.ª forma do teorema de Zorn resulta que existe $M \in \mathscr{X}_w$ maximal em \mathscr{X}_w munido da (+)-inclusão. Logo $M = M \cup \{w\}$ se w fôr cota superior de M. Portanto $M^+ = \{m\}$ e $m \in N$. Conseqüêntemente $w \leq m$ e m é maximal em (E, \swarrow) .

9. Seja (E, \leq) um sistema ordenado. Se M e A são partes de E diz-se que Mé cofinal em A se $M \subset A$ e para cada a e A existe $w \in M$ tal que $a \leq w$. Se M for cofinal em A, então $M^+ = A^+$ e A admite supremo se, e só se M admite supremo.

LEMA 9. Para toda parte A de E existe M cofinal em A tal que M seja parcialmente bem ordenado.

Demonstração. Seja \mathcal{Z}_A o conjunto das partes parcialmente bem ordenadas contidas em A. Pelo lema 8 e pela $1.^a$ forma do teorema de Zorn existe um elemento $Me \mathcal{Z}_A$ maximal em \mathcal{Z}_A munido da (#)-inclusão. Resta apenas, mostrar que M é cofinal em A. Se M não fôsse cofinal em A, então para todo aeA-M se teria aeM^{\ddagger} , logo $M \cup |a|$ seria parcialmente bem ordenado e $M \cup |a| \subset A$, porém isto é absurdo visto que M é maximal em \mathcal{Z}_A .

Do lema 9 deduz-se:

Proposição 5. Seja (E, \leq) um sistema ordenado. As seguintes condições abaixo são equivalentes

(BI) Tôda parte bem ordenada de E possui uma cota superior (resp. admite supremo);

(TI) Tôda parte totalmente ordenada de E possui uma cota superior (resp. admite supremo).

OBSERVAÇÃO. Se $X,Y \subset +W$, então $X \subset +Y$ ou $Y \subset +X$. Seja $\mathscr F$ um conjunto cujos elementos são partes de E. Com respeito a (+)-inclusão $\mathscr F$ é totalmente ordenado se, e só se $\mathscr F$ for filtrante.

10. Do lema 7, por relativisação, resulta:

COROLÁRIO 5. Seja (E, f, \leq) um sistema crescente tal que tôda parte não vazia e bem ordenada de E admita supremo. Para todo $w \in E$ tal que w < f(w) existe $m \in E$ tal que w < m e f(m) = m.

No corolário acima, a hipótese w < f(w) é essencial como mostra o seguinte exemplo: seja $\Delta_E = \{(x,y) | (x,y) \in E \times E \text{ e } x = y \};$ se f é uma função de E para E a qual não admite ponto fixo, então (E,f,Δ_E) é um sistema crescente tal que tôda parte não vazia e totatmente ordenada de E admite supremo.

COROLÁRIO 6. Seja (E, f, \leq) um sistema crescente tal que E seja finito. Se E possui primeiro elemento ou se existe um elemento $w \in E$ tal que w < f(w), então f possui ponto fixo.

Sobre a determinação do contradomínio de certas funções de matrizes

por G. N. de Oliveira Coimbra

1. Seja $\mathfrak S$ um conjunto de matrizes e $\mathscr F$ um conjunto arbitrário. Seja y=f(A) uma «função» que toma valores em $\mathscr F$ quando A percorre $\mathfrak S$. Suporemos que f pode ser multivalente, isto \acute{e} , que a cada matriz A podem corresponder vários elementos de $\mathscr F$.

Designemos por $\mathcal{F}_f(\mathfrak{S})$ o contradomínio de f, isto é, $\mathcal{F}_f(\mathfrak{S})$ é o subconjunto de \mathcal{F} definido por

 $y \in \mathcal{F}_f(\mathfrak{S}) \Longleftrightarrow \exists A \in \mathfrak{S}$ tal que y é um dos elementos de \mathcal{F} que f faz corresponder a A.