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1. Introduction. — Frequently in modern
mathematics there occur phenomena of «na-
turality» : a «natural» isomorphism between
two groups or between two complexes, a
«natural» homeomorphism of two spaces and
the like. We here propose a precise definition
of the «naturality» of such correspondences,
as a basis for an appropriate general theory.
In this preliminary report we restrict our-
selves to the natural isomorphisms of group
theory; with this limitation we can present
the basic concepts of our theory without de-
veloping the axiomatic approach necessary
for a general treatment applicable to various
branches of mathematics.

Properties of character groups (see the
definitions in § b below)(**) may serve to
illustrate the ideas involved. Thus, it is often
asserted tbat the character group of a finite
group G is isomorphic to the group itself,
but not in a _«natural» way. Specifically, if
G is cyclic of prime order p, there is for
each generator of G' an isomorphism of G
to its character group, so that the proof
furnishes p — 1 such isomorphisms, no one
of which is in any way distinguished from
its fellows. However, the proof that that the
character group of the character group of G

(*) Reproducgfio das pp. 537-543 do vol. 28 dos
Proe. N. A. Sc. USA, amavelmente autorizada pelo
Editor.

(**) Ver Nota final.

is isomorphic to G itself is considered «na-
tural», because it furnishes for each @ a
unique isomorphism, not dependent on any
choice of generators.

To give these statements a clear mathe-
matical meaning, we shall regard the cha-
racter group Ckh(G) of G as a funetion of
a variable group G, together with a pres-
cription which assigns to any homomorphism
7 of G into a second group G'.

7:G -G,
the induced homomorphism (see (5) below)
Ch(y): Ch(G") -~ Ch(G).

The functions Ck(G) and Ck(y) jointly
form what we shall call a «functor»; in this
case, a «contravariant» one, because  the
mapping Ch(y) works in a direction opposite
to that of y. A natural isomorphism between
two functions of groups will be an isomor-
phism which commutes properly with the
induced mappings of the functors.

With our description of a natural isomor-
phism, practically all the general isomor-
phisms obtained in group theory and its
applications (homology theory, Galois theory,
etc.) can be shown to be «natural». This
results in added clarity in such situations.
Furthermore, there are definite proofs where
the naturality of an isomorphism is needed,
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especially when a passage to the limit is
involved. In fact, our condition (£ 2) below
appears in the definition of the isomorphism
of two direct or two inverse systems of

groups (1).

2. Fumctors. — The definition of a functor
will be given for the typical case of a functor
T which depends on two groups as argu-
ments, and is covariant in the first argument
and contravariant in the second. Such a
functor is determined by two functions. The
group function determines for each pair of
topological groups G and H (contained in
a given legitimate set of groups) another
group T'(G,H). The mapping functions de-
termines for each pair of homomorphisms (2)
7:G1— Gy and n: Hy—H, a homomorphism
T(y,n), such that

(1) T(y0):(Gr, Hy) = T(Gy, Hy).

We require that 7'(y,n) be the identity iso-
morphism whenever y and = are identities,
and that, whenever the products 737, and
ngny are defined,

(@) T(yayismem) = T(yasm) T(y1519).

Some functors will be defined only for special
types of groups (e. g., for abelian groups) or
for special types of homomorphisms (e. g.,
for homomorphisms conto»).

If y and = are both isomorphisms (3), it
follows from these conditions that 7'(y,n) is

(1) Poxrrisam, L., «Ueber den algebraischen Inhalt
der topologische Dualititsitzen, Mathematische Ann.,
105, 165-205 (1931). LeFscaerz, S., «Algebraic Topo-
logyw», Am, Math. Soc. Colloguium Pub., 27,55 (1942).

(3) By a homomorphism we mean a definite pair of
groups G4 and G, and a (continuous) homomorphic
mapping v; of the first onto a subgroup of the second.
The product v, 74 is defined for those pairs v,:G1—+G3,
12: G, — G5 with Gy = G}.

(3) By an isomorphism we mean a homomorphism
of G4 onto G3 which is one-one and bicontinuous.

also an isomorphism. Consequently, if the
groups G and G, and the groups X, and
I, are isomorphic, the functor 7' gives rise
to isomorphic groups 7'(G,,H;) and
T(Gq, ).

3. Examples. — The direct product G'><H
of two groups may be reguarded as the group
funetion of a functor. The corresponding
mapping function specifies, for each pair of
homomorphisms y: Gy — Gy and n: H; — Hy,
an indaced homomorphism y3><n, defined
for every element (g,,%;) in Gy H; as

[7><X0](g1,R1) = (7 91,mMy) -
Then

B)  yXn:Gyx< H - Gy Hy,

and, whenever 7,7, and wmgn; are defined,
one has

4) (ra71)><(ngm) = (72 < mg) (71 ><Xmy)

Except for the absence of contravariance,
these conditions are parallel to (1) and (2),
hence G'><H,y><n define a functor, cova-
riant in both G' and H.

Whitney’s tensor product(4)(*) G o H of
two discrete groups (5) G and H is the group
function of a functor. The elements of this
group are all finite sums 2 g, o ; of formal
products g, o &;; the group operation is the
obvious addition, and the relations are
goh+H)=goh+gok,(g+g)oh=
goh+ g'oh. Given two homomorphisms
y: Gy — Gy and w:I; —~ Hy, there is an
induced homomorphism 7 o n of Gye H, into

(%) Warsey, H., «Tensor Products of Abelian
Groups», Dulke Math. Jour., 4, 495-528 (1938).

(*) A notagfio usual ¢ G & H.

(5) Here and subsequently the group operation in
G and in H is written as addition, whether or not
the groups are abelian.
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Gy o Hy, defined for any generator g;o
of Gy 0 H, as

[yonl(grohy) =(791) 0 (nk)e Gyo Hy.

Formulae (3) and (4), with the cross replaced
by the circle, again hold, so that G'e H,yon
determine a functor of discrete groups, cova-
riant in both arguments.

In a similar fashion, the free product of
two groups leads to a functor.

An important functor is given by the group
of all homomorphisms ¢ of a fixed locally
compact topological abelian group G into
another topological abelian group H. The
sum of two such homomorphisms ¢; and ¢,
is defined for each geG by setting
(91 + 92)(9) = 91(9) + 92(g). Under this
operation, all ¢: G'— H constitute a group
Hom (G, H): it carries an appropriate topo-
logy, the description of which we omit. For
given y:G, — Gy and =n:H, — H, and for
each ¢ e Hom(G,, H;) we have

i P n
G]—FGQ—FIII—PHQ-

Consequently we define Hom (y,n)(9)=n97,
and verify that

Hom (y ,n): Hom (Gs , Hy) - Hom (G, I,),
Hom (y3 7y » o y) = Hom (1 , ng) Hom (5, 1) .

Clearly when y and = are identity mappings
of G and H the induced mapping Hom (y ,n)
is the identity mapping of Hom(G,H) on
itself. Hence the functions Hom (G, H) and
Hom (y,n) determine for abelian groups a
funetor Hom, covariant in A and contra-
variant in G .

The special case when H is the group P
of reals modulo 1 furnishes the character

group,

Ch(G) = Hom (G, P), Ch(y)= Hom(y,e)

where e is the identity mapping of £ on
itself, Therefore the character group is a
contravariant functor, defined for abelian
groups. Explicitly, if we express the result
X(g) of applying the character % to the
element ge G as the value (a real number
modulo 1) of the bilinear form (g,X), the
definition of Ck(y) can be written as

®) (9, Cr(X)=(79,X), ge G, X'e Ch(G')

4. Equivalence of Functors.—Let T and
S be two functors which are, say, both
covariant in the variable G and contra-
variant in H. Suppose that for each pair of
groups G and H we are given a homo-
morphism

+(@,H):T(G, H)~ S(G, H).

We say that © establishes a natural equiva-
lence of the functor 7’ to the fanctor § and
that 7" is naturally equivalent to S (in
gymbols, t:7«-8) whenever

(E1) Each <(G,H) is a bicontinuous
isomorphism of 7(G,H) onto
S(G,H);

(E2) Foreach y:Gy -Gy and n: U, 11,

v(Gy, Hy) T(y,m)=S(7,0)%(Gy, Hy).

The first requirement insures the term-by-
-term isomorphism of the two group functions
T(G.H) and S(G,H), while the second
requirement {s precisely the «naturality»
condition. It can be shown that the condition
(E2) is implied by two special cases; the
case when wn is an identity, and the case
when y is an identity.

This relation of natural equivalence between
functors is reflexive, symmetric and transi-
tive, In many cases we dispense with con-
dition (E1), and obtain a more general
concept of a «transformation» of a functor 7°
into a fanetor S.
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5. Examples of Natural Equivalence. —
The well known isomorphism

(6) G =Ch(Ch (@)

for locally compact abelian groups, can be
regarded as an equivalence of functors, and
is in this sense natural. The right-hand side
of (6) suggests the covariant functor, ChA2,
defined by iteration of the functor Ch, as
Ch?(G) = Ch(Ch(G)), Cr2(y)= Ch(Ch(y)).
The left-hand side of (6) suggests the iden-
tity functor, I,

I(G)=G, I =7-

The bilinear form (g,X)=X(g) determines
to each character Xe Ch(G) and each ge G
a real number modulo 1; similarly the form
(X, k) = k(X) is defined for each Ae Ci2(G).
The form (g¢,%), regarded as a function of
% for fixed g, is a.character 2 in Ch2(G)
which we call [v(G)]g. Explicitly, this defi-
nition of t reads
®*,7(G)9)=(9,%, geG, ¥eCh(G).
The validity of condition (£1) for =(G) is
the basic theorem of character theory. The
condition (E 2) asserts that in the diagram

(G

G Ch2(G)

l ' l Ch2 ()
= (G’)

G’ Ch2(G")

the two paths leading from G to Ck2(G’)
have the same effect, or that, for each ge G,
both elements t(G')yg and CR2(y)=(G)g
are identical as elements of Ck3(G'). This

means that, for each X'e Ch(G’), one should
have

X7 (G)yg) =, CR2(9)%(G)g)-

By the definition of =, the expression on the
left is simply (yg,%'). By successive appli-
cation to the expression on the right of the
definitions of Ch, v and Ch, we obtain

X, Ch2 ()= (@) 9) = (Ch (DX, = (@) g) =
=(9,Ch(X)=(y9,%).

The identity of these results shows that we
do have a natural equivalence

©(G): G Ch2(Q).

When G is finite, the isomorphism
G — Ch(G) cannot be anatural» according to
our definitions, for the simple reason that
the functor I on the left is covariant, while
the functor C% on the right is contravariant.

As other examples of equivalences between
functors, we may cite the nsual isomorphisms
which give the associative and commutative
laws for the direct product, the tensor pro-
duct and the free product. Various distribu-
tive laws, such as

(G1><Gg) o H=(G 0 H)><(Gy 0 H),

Hom (Gl =< GQ,H)E Hom (Gl ,II)X
> Hom (Gy, H),

when established with the obvious isomor-
phisms, are in fact equivalences between
fonctors.

A less obvious relation between the tensor
product and the functor «fom» is (1)

() This isomorphism was established by the aun-
thors; cf. Ann. Math., 44 (1943).
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(7) Hom(G,Hom(H, K))=Hom (G o H,K),

where G and H are discrete abelian groups,
K a topological abelian group. This iso-
morphism is obtained by a correspondence
(G, H,K) which specifies for each element
¢ € Hom (G, Hom (H, K)) a corresponding
homomorphism in Hom (G o H,K), defined
for any generator gok of G o H as

[=(G, H,K)] (9)(geh)=[2(9)](R) in K.

One may show that r does give an isomor-
phism, bicontinuous in the appropriate topo-
logies. Both sides of (7) may be treated as
the group functions of functors which are
obtained by composition from «Hom» and
€o». The corresponding mapping functions,
for given homomorphisms

?:Gl—*Gg, 'ﬂ:.m—*ffg, K:KI—PIX’Q,

are defined by a parallel composition as

Hom (y ,Hom(n,x)), Hom(yomn,x).

Both functors are contravariant in @ and
H, covariant in K.

The naturality condition for the isomor-
phism © reads

<(Gy, Hy, Ky) Hom (y, Hom(n,%)) =
= Hom (y e n,%)% (G, Hy, Ky).

Both sides, when applied to an element
9 e Hom (Gy , Hom (H, , K;) yield a homomor-
phism in Hom (G, o Hy, K,). If each of these
homomorphisms is applied to a typical gene-
rator . ¢, o &y of the tensor produet G, o I,
straightforward application of the relevant

definitions shows that the same element of
K, is obtained in both cases; namely,
x {2 (7(91))](n (%))} - One may also see di-
rectly that this expression represents the
only way of constructing an element of X,
from the elements ¢; and %; and the map-
pings %, ¢, y and =.

The natural isomorphism (7) has some
interesting consequences. If £ is taken to
be the group P of real numbers modulo 1,
Hom (H ,K) becomes the character group
Ch(H), and the formula may be written as

Hom (G ,ChH)=Ch(G o H).

Applying the functor Ch to both sides and

' using the natural equivalence of Ch? and 7,

we obtain the equivalence
G o H= Ch Hom (G, Ch H).

Since this is c¢natural», this could be used as
a definition of the tensor product G o H.

6. Generalisations — With the appropriate
definition of a normal subfunctor S of a
fonctor 7' one can construct a quotient
functor 7'/S, whose group function has as
itg values quotient groups (i. e., factor groups).
With this operation, all the standard cons-
tructions on groups may be represented as
group functions of suitable functors.

An inspection of the concept of a functor
and of a natural equivalence shows that they
may be applied not only to groups with their
homomorphisms, but also to topological spaces
with their continuous mappings, to simplicial
complexes with their simplicial transforma-
tions, and to Banach spaces with their linear
transformations. These and similar applica-
tions can all be embodied in a suitable axio-
matic theory. The resulting much wider
concept of naturality, as an equivalence
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between functors, will be studied in a sub-
sequent paper.

NOTA: A Nota que aqui incluimos destina-se a
facilitar aos leitores nfio familiarizados com a nogiio
de grupo dos caracteres de um grupo, a compreensio
das ideias expressas pelos autores no § 1. Procuramos
respeitar o espirito do texto.

Seja ¥V um espago vectorial real e V* o seu dual
(i. e. o conjunto das aplicagoes lineares de ¥ em R
munido da estrutura de espago vectorial real usual).
E bem sabido que se ¥V tem dimensZo finita n, a
dimens3o de V* é também n e, portanto, V e V¥
sio isomorfos. Mais precisamente, para cada par de
bases (6)1—i<n © ()1 <i=n de V e V*, res-
pectivamente, existe um (e um s6) isomorfismo
f:V—V* tal que f(e,) = €% ,1=i=n. Nestas con-
digdes, se n =0, existe uma infinidade de isomor-
fismos de V sobre ¥* nenhum dos quais se pode
obviamente considerar privilegiado em relagio aos
outros. Todavia, a aplicaglio ¥Wy:V — V** que asso-
cia a cada eV a forma linear sobre V*,v (x)
tal que (¥ (x))(f) =f(x) para todoo fe V*, é
um isomorfismo de ¥V sobre V** considerado «na-
tural» por nio depender de quaisquer bases prévia-
mente escolhidaspara V' e V**,

Para dar um sentido preciso ao que precede, con-
vém considerar a passagem ao dual como um par de
fungdes: a primeira fungdo associa a cada espago V

o seu dual V* e a segunda fungfio associa a cada
aplicagiio linear y:V — V" a transposta y*:V*»V7*
(i. e. a aplicagiio linear que faz corresponder a cada
SfeV* y*(f)e V* tal que, para todo o ze ¥,
(v* (f)) (®) = f(y(x)) ). Este par de fungdes é um
funtor; mais precisamente, um functor contravariante
visto que a aplicagdo correspondente a uma aplicagio
linear de V' em V' é uma aplicagio linear de V/*
s XL

Um isomorfismo ou equivaléncia natural entre dois
fuctores § e 7 é uma familia de isomorfismos
S (V)-»T (V) tal que, para cada y: V=V,
S (V) =T (V),S(V)=T (V')
S®),T(y) um diagrama comutativo.

constituem com

Assim, se § e T sfo funtores covariantes, a apli-
cagio composta de S (V')— T (V') com S(y) é
igual 4 composta de T'(y) com S(V)—=T(V). A
situagfio que consideramos no inicio da Nota ilustra
perfeitamente este conceito: se § designa o functor
idéntico (que associa a cada espago vectorial real de
dimens#o finita ¥ o prdoprio ¥V e a cada aplicagfo li-
near y a propria aplicagio y) e T designa o funtor
que associa a V" o seu bidual V** e a cada aplicagio
i izt
familia de isomorfismos ¥, ¢ uma equivaléncia na-
tural entre § e T'; todavia, os funtores idéntico e
«passagem ao dual» ndo podem ser naturalmente

linear reconhece-se imediatamente que a

equivalentes em virtude de o primeiro ser covariante
e o segundo contravariante.

A. V. Ferreira

«A matemdtica foi criada pelos homens para satisfagdo das suas necessidades, e tem

sido para eles, de faclo, um precioso instrumento; o professor de matemdtica deve permanecer

por iss0 um professor de acgdo. ..».

H. Lesesaur

«A produgdo industrial pode estar sensivelmente em atraso sobre as descobertas cienti-
_ Jicas» . .... «a aplicagdo rapida das descobertas cientificas na economia macional supde resol-

vidos um certo nimero de problemas econdmicos, institucionais, etc.».

M. LaiveresTiEy
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PRELUDE (Y

Au commencement tout était morne et informe.
Le Géometre dit: Que la lumitre soit!

Et les structures l& par espieces pergoit;

Dvu chaos émergent attraits, contours et normes.

Deés lors il structure les objets et les floches,
Puis structure les structures, tdche sans fin.
L’application, outil premier pour Dedekind,

Se mue en 'morphisme, d’apparence une fliche.

Catégories en expansion dans I’ Univers,
Leurs trios s'accordent, les quatuors résonnent,
Comme les quintettes, niant deux fois Zénon,

Se composent en long, et en large, un sens clair
Aux métamorphoses bien naturelles donnent.
Tout cela, dit le Sphinx (*), pour amuser Zsov.

(*) Goerae, Faust II, Nuit classique de Walpurgis.

(1) Reprodugio amavelmente autorizada pelo Editor, da pdg. V da obra «Catégories et Structuress
de Cm. Emgesmany; Dunod, ed. 1965.



