Cardinality of a set of topologies

by O. T. Alas

Instituto de Matemática e Estatística, Universidade de São Paulo, Brasil

Let E be an infinite set and K be the set of all topologies τ on E, such that (E,τ) is a Hausdorff compact connected and locally connected space. Question: Which is the cardinal number of the set K? The purpose of this note is to answer this question.

1. For any set Z, |Z| denotes the cardinal number of Z.

Suppose that K is a nonempty set and let τ be a fixed element of K. Since (E,τ) is a normal connected space, the cardinality of the set E is greater than or equal to 2^{\aleph_0} .

Now, we fix an element $b \in E$. Let us denote by τ' the product topology on $[0,1] \times E$, where E is topologized with τ and [0,1] with the usual topology. Put $G = [0,1] \times E - \{(0,b)\}$. G as a subspace of $[0,1] \times E$ is a Hausdorff locally compact connected and locally connected space.

For each partition $\{X_1, X_2\}$ of $E - \{b\}$ (thus $E - \{b\} = X_1 \cup X_2$ and $X_1 \cap X_2 = \emptyset$), with $|X_1| = |X_2| = |E|$, we fix two bijective functions $f_1: G \to X_1$ and $f_2: G \to X_2$. (The set of all partitions of $E - \{b\}$ under the above conditions has cardinality equal to $2^{|E|}$ by virtue of [1] and because $|E \times E| = |E|$). Putting $P = \{X_1, X_2\}$, let us denote by τ_P te topology on E such that the set

 $|f_1(Z \cap G) \cup f_2(Z \cap G) \cup \{b\} | (0, b) \in Z \in \tau'\} \cup |f_1(Z \cap G)| Z \in \tau'\} \cup |f_2(Z \cap G)| Z \in \tau'\}$ is an open basis of the topology τ_P .

Proposition 1. (E, τ_P) is a Hausdorff compact connected and locally connected space.

PROOF. It is obvious that (E, τ_P) is a HAUSDORFF space. On the other hand, X_1

and X_2 are open-connected subsets and it follows immediately that (E, τ_P) is connected. The subspaces $X_1 \cup \{b\}$ and $X_2 \cup \{b\}$ are compact; thus (E, τ_P) is a compact space.

Finally, it is sufficient to prove that b has a fundamental system of connected neighborhood of b in the topological space (E,τ) and put $Z = [0,1/n[\times W],$ where $n \ge 1$ is a natural number. The set Z is a connected neighborhood of (0,b) in the product topological space $([0,1]\times E,\tau')$. Therefore $f_1(Z\cap G)\cup \bigcup f_2(Z\cap G)\cup \{b\}$ is a connected neighborhood of b in the topological space (E,τ_P) . So it follows easily that (E,τ_P) is locally connected.

2. Let $Q = \{Y_1, Y_2 | \text{ be another partition of } E - \{b\}$, with $|Y_1| = |Y_2| = |E|$, and let τ_Q be the correspondent topology on E. We shall prove that if $P \neq Q$, then $\tau_P \neq \tau_Q$.

On the contrary, suppose that $P \neq Q$ and $\tau_P = \tau_Q$. The sets X_1, X_2, Y_1 and Y_2 are open connected in (E, τ_P) and $X_1 \cup X_2 = Y_1 \cup Y_2$. Thus $X_1 = Y_1$ and $X_2 = Y_2$ or $X_1 = Y_2$ and $Y_1 = X_2$. It follows that P = Q, which is impossible.

PROPOSITION 2. The cardinality of the set K is equal to 0 or to $2^{|E|}$.

PROOF. Since for any $\sigma \in K$, (E, σ) is HAUSDORFF compact, then |K| is less than or equal to $2^{|E|}$. So the proof is completed.

REFERENCES

[1] E. Farah, Number of equivalence relations on a set. Ciência e Cultura 18 (1966), n.º 4, p. 437.