MATEMÁTICAS SUPERIORES

PONTOS DE EXAME DE FREQUÊNCIA E FINAIS MATEMÁTICAS GERAIS

I. S. C. E. F. — MATEMÁTICAS GERAIS — 1.* cadeira — Exame final — Ano lectivo 1969-70 — Ponto n.º 1 — 4-6-1970.

5773 - 1) Prove que

$$f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$$
.

R.: Provemos em primeiro lugar que

$$f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$$
.

$$x \in f^{-1}(A) \cup f^{-1}(B) \Longrightarrow x \in f^{-1}(A) \lor x \in f^{-1}(B) \Longrightarrow$$

 $\Longrightarrow f(x) \in A \lor f(x) \in B \Longrightarrow f(x) \in A \cup B \Longrightarrow$
 $\Longrightarrow x \in f^{-1}(A \cup B).$

Mostremos agora que

$$f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$$
.

$$\mathbf{x} \in \mathbf{f}^{-1}(\mathbf{A} \cup \mathbf{B}) \Longrightarrow \mathbf{f}(\dot{\mathbf{x}}) \in \mathbf{A} \cup \mathbf{B} \Longrightarrow \mathbf{f}(\mathbf{x}) \in \mathbf{A} \vee \mathbf{f}(\mathbf{x}) \in \mathbf{B} \Longrightarrow$$
$$\Longrightarrow \mathbf{x} \in \mathbf{f}^{-1}(\mathbf{A}) \vee \mathbf{x} \in \mathbf{f}^{-1}(\mathbf{B}) \Longrightarrow \mathbf{x} \in \mathbf{f}^{-1}(\mathbf{A}) \cup \mathbf{f}^{-1}(\mathbf{B}).$$

2) Sendo X subconjunto do espaço métrico A, prove que o seu fecho \overline{X} é a intersecção de todos os conjuntos fechados que contêm X.

Ache o supremo, o íntimo e o fecho do conjunto linear

$$X =]1,3] \cup \{x \in R : x = (-1)^n \frac{n}{3n+2} (n=1,2,\cdots) \}.$$

O conjuno X é fechado? É aberto? Porquê?

R.: Seja K a intersecção de todos os conjuntos fechados que contêm X. Então, como $K \supseteq X$, tem-se $\overline{K} \supseteq \overline{X}$. K é fechado e portanto $K = \overline{K}$. Assim $K \supseteq \overline{X}$. Por outro lado, \overline{X} é fechado, $\overline{X} \supseteq X$ e assim \overline{X} e um dos conjuntos cuja intersecção é K. Portanto $\overline{X} \supseteq K$. Assim $K = \overline{X}$.

Para o conjunto linear X apresentado no problema

é sup
$$X = 3$$
, inf $X = -1/5$, $\overline{X} = X \cup \left\{-\frac{1}{3}, \frac{1}{1}\right\}$.

O conjunto X não é fechado nem aberto.

3) Considere os intervalos fechados $I_n = [l_n, L_n]$, suponha que $I_n \supseteq I_{n+1}$ $(n=1, 2, \cdots)$ e que $L_n - l_n \to 0$. Prove que existe um e um só ponto comum a todos os intervalos I_n .

Calcule
$$\lim_{n\to\infty} \frac{\log\left(1+\frac{\log n}{n^2}\right)-\frac{1}{n}}{\sqrt[n]{a}-1}$$

R.: Tem-se

$$l_1 \leq l_2 \leq \dots \leq l_n \leq \dots$$

$$L_1 \geq L_2 \geq \dots \geq L_n \geq \dots$$

e, com $l_1 \le l_n \le L_n \le L_1$, as successões l_n e L_n têm limites finitos e, dado que $L_n - l_n \to 0$, tem-se lim $l_n = \lim_n L_n = \xi$.

É claro que ξ é o único ponto comum a todos os intervalos I_n . Se houvesse outro n, teríamos $L_n-l_n \ge |\xi-\eta| \quad \forall n \in \mathbb{N}$ e então não era verdade que $L_n-l_n \to 0$.

$$\lim \frac{\log \left(1 + \frac{\log n}{n^2}\right) - \frac{1}{n}}{\sqrt[n]{a} - 1} = \lim \frac{n \frac{\log n}{n^2} - \frac{1}{n}}{e^{\frac{1}{n}\log a} - 1} =$$

$$= \lim \frac{\eta \frac{\log n}{n^2} - \frac{1}{n}}{\xi \frac{1}{n} \log a} = \lim \frac{\eta \frac{\log n}{n} - 1}{\xi \log a} = -1/\log a.$$

4) Considere a série $\sum a_n (a_n \ge 0)$. Mostre que, se o conjunto dos termos da sucessão " $\sqrt{a_n}$ possui um ponto de acumulação maior do que 1, a série é divergente.

Estude a natureza da série $\Sigma \frac{1}{[4+(-1)^n]^n}$.

R.: Se $\{\sqrt[n]{a_n}\}$ tem um ponto de acumulação maior do que 1, então $\overline{\lim} \sqrt[n]{a_n} > 1$ e $\sum a_n$ diverge.

Como

$$\overline{\lim}^{n} \sqrt{\frac{1}{[4+(-1)^{n}]^{n}}} = \overline{\lim} \frac{1}{4+(-1)^{n}} = \frac{1}{3} < 1,$$

a série dada converge.

5) Sendo f função contínua em $]-\infty, +\infty[$, (inclusivé nos pontos impróprios), mostre que

$$\forall x \in R, \exists k \in R: f(x) + k > 0.$$

Na mesma hipótese e supondo $f(-\infty) \cdot f(+\infty) < 0$, indique, justificando, o máximo da função definida por $g(x) = \frac{1}{a^2 + \lceil f(x) \rceil^2}$.

R.: Como f é continua em $]-\infty, +\infty[$, tem-se $\forall x \in R \mid f(x)| < k$ (ou $\forall x \in R - k < f(x) < k$) donde resulta $\forall x \in R, \exists k \in R \mid f(x) + k > 0$.

Como f passa por todos os valores desde f ($-\infty$) a f ($+\infty$), toma o valor 0. Então, max g (x) = $1/a^2$.

6) Deduza a fórmula que dá a derivada da função definida por $f(x) = \log_a x$ com $a \neq e$.

R:
$$y = log_a x \iff x = a^y$$

$$\frac{\mathrm{d}\,\mathrm{y}}{\mathrm{d}\,\mathrm{x}} = 1 \, \bigg/ \, \frac{\mathrm{d}\,\mathrm{x}}{\mathrm{d}\,\mathrm{y}} = \frac{1}{\mathrm{a}^{\mathrm{y}}\log\mathrm{a}} = \frac{1}{\mathrm{x}\log\mathrm{a}} \,.$$

I. S. C. E. F. — MATEMÁTICAS GERAIS — 1. cadeira — Exame final — Ano lectivo 1969-70 — Ponto n.º 2 — 24-6-1970.

5774-1) Sendo a e b números reais, prove que

i)
$$a \neq 0 \land b \neq 0 \Longrightarrow (a \ b)^{-1} = a^{-1} \ \bar{b}^{-1}$$
.

ii)
$$|a| \ge a$$
 $|a| \ge -a$.

R: i)
$$(a b) (a^{-1} b^{-1}) = a b (b^{-1} a^{-1}) =$$

 $= a (b b^{-1}) a^{-1} = a a^{-1} = 1$
 $(a^{-1} b^{-1}) (a b) = b^{-1} (a^{-1} a) b = b^{-1} b = 1$.
 $Logo, (a b)^{-1} = a^{-1} b^{-1}$.

ii)
$$|a| = \begin{cases} a & (a \ge 0) \\ -a & (a < 0) \end{cases}$$

Sendo $a \ge 0$, vem $-a \le 0$ e $|a| = a \ge 0 \ge -a$ o que dá |a| = a e $|a| \ge -a$; supondo a < 0, vem -a > 0 e |a| = -a > 0 > a o que dá |a| > a e |a| = -a.

Portanto, em todos os casos, $|a| \ge a \land |a| \ge -a$.

 Sendo X subconjunto do espaço métrico A, prove que int X é a reunião de todos os conjuntos abertos contidos em X.

Ache int X, ext X, sup X e inf X para o conjunto linear

$$X = [1,3] \cup \{5,6\} \cup \left\{ x \in R : x = \frac{2n + (-1)^n n}{n+1} \right\}$$

Justifique as respostas.

R: Seja G a reunião de todos os conjuntos abertos contidos em X. Então G é aberto. O int X é conjunto aberto contido em X e portanto int $X \subseteq G$. Se x e G, então x pertence a um conjunto aberto $T(T \subseteq X)$. Como T é aberto, existe $\epsilon > 0$ tal que $V_{\epsilon}(x) \subseteq T$ e portanto $V_{\epsilon}(x) \subseteq X$ e x e int X. Logo x e $G \Longrightarrow x$ e int X e portanto $G \subseteq int X$. Podemos pois afirmar que G = int X.

Para o exercício proposto é

$$\begin{aligned} &\inf X =]1\,, 3\,[\\ &\exp X = R - \left\{ [1\,, 3] \cup \, |5\,, 6\,| \, \cup \left\{ x \in R : x = \frac{2\,k + 1}{2\,k + 2} \right\} \right\} \\ &\sup X = 6 \\ &\inf X = 1/2 \end{aligned}$$

3) Supondo que $\lim u_n/v_n = 1$ e v_n é sucessão limitada, prove que $u_n - v_n \to 0$.

Dê um exemplo de sucessões u_n e v_n para as quais $u_n/v_n \rightarrow 1$ mas $\lim (u_n - v_n) \neq 0$.

Calcule
$$\lim_{n\to\infty} (\sqrt[n]{a} - 1)^{\frac{\log n}{n^2}}$$
.

$$\begin{split} \mathrm{R}: & \frac{\mathrm{u}_{\mathrm{n}}}{\mathrm{v}_{\mathrm{n}}} \rightarrow 1 \Longleftrightarrow \frac{\mathrm{u}_{\mathrm{n}}}{\mathrm{v}_{\mathrm{n}}} = 1 + \alpha_{\mathrm{n}} \left(\alpha_{\mathrm{n}} \rightarrow 0 \right) \Longleftrightarrow \mathrm{u}_{\mathrm{n}} = \mathrm{v}_{\mathrm{n}} + \\ & + \alpha_{\mathrm{n}} \, \mathrm{v}_{\mathrm{n}} \Longleftrightarrow \mathrm{u}_{\mathrm{n}} - \mathrm{v}_{\mathrm{n}} = \alpha_{\mathrm{n}} \, \mathrm{v}_{\mathrm{n}}. \end{split}$$

Ora a_n v_n → 0 e a proposição está provada.

Tomando $u_n = n$ e $v_n = n + 1$, vem $u_n/v_n \rightarrow 1$ mas $u_n - v_n = -1$ e portanto $u_n - v_n$ não tende para 0 porque v_n não é limitada.

$$\lim_{n \to \infty} \frac{\log n}{n^2} \log (\sqrt[n]{a} - 1) = \lim \frac{\log n}{n^2} \log (e^{\frac{1}{n} \log a} - 1) =$$

$$= \lim \frac{\log n}{n^2} \log \left(\xi \frac{1}{n} \log a \right)$$

$$= \lim \frac{\log n}{n^2} (\log \xi + \log \log a - \log n) =$$

$$= \lim_{n \to \infty} \left[\frac{\log n}{n^2} \log \xi + \frac{\log n}{n^2} \log \log a - \left(\frac{\log n}{n} \right)^2 \right]$$

$$= 0.$$

Portanto, $\lim_{n \to \infty} {n \choose 2} = 1$.

4) Seja p_n uma sucessão de termos positivos e $P_n = p_n \frac{a_n}{a_{n+1}} - p_{n+1} (a_n > 0)$.

Demonstre que: (i) $\lim_{n \to \infty} P_n > 0 \Longrightarrow \Sigma a_n$ converge; (ii) $\lim_{n \to \infty} P_n < 0 \land \Sigma (1/p_n)$ diverg, $\Longrightarrow \Sigma a_n$ diverge.

Deduza o corolário que se obtém fazendo $p_n = n$ e mostre que se trata de um corolário do critério de RAABE.

Estude a natureza das séries

$$\Sigma \frac{1 + (-1)^n}{n}$$
 e $\Sigma \frac{1 + (-1)^n}{n^2}$.

R: Considerando P>0, tome-se $\varepsilon>0$ suficientemente pequeno por forma que $K=P-\varepsilon>0$. Portanto, a partir de certa ordem, é

$$p_n \frac{a_n}{a_{n+1}} - p_{n+1} > K$$

ou

$$\frac{a_{n+1}}{a_n} < \frac{p_n}{p_{n+1} + K}$$

o que implica a convergência de Za_n (1.ª parte do critério de Kummer).

Com $\overline{P} < 0$, tome-se $\epsilon > 0$ suficientemente pequeno por forma que $K = \overline{P} + \epsilon < 0$ e então, a partir de certa ordem,

$$p_{n} \frac{a_{n}}{a_{n+1}} - p_{n+1} < 0$$

o que dá

$$\frac{a_{n+1}}{a_n} > \frac{p_n}{p_{n+1}}$$

condição que, juntamente com a divergência de \(\Sigma(1/p_n)\), garante a divergência de \(\Sigma a_n\) (2.ª parte do critério de \(\Kummen)\).

Fazendo pn = n, vem

$$P_n = n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1$$
.

 $\lim P_n > 0 \Longrightarrow \Sigma a_n C$, equivale a afirmar que

$$\underline{\lim} \ n \left(\frac{a_n}{a_{n+1}} - 1 \right) > 1 \Longrightarrow \Sigma \ a_n \ C.$$

 $\overline{\text{lim}} \, P_n < 0 \land \Sigma \, (1/n) \, D. \Longrightarrow \Sigma \, a_n \, D.$ equivale a

$$\overline{lim} \operatorname{n} \left(\frac{a_n}{a_{n+1}} - 1 \right) < 1 \Longrightarrow \Sigma a_n D.$$

Para $\Sigma \frac{1+(-1)^n}{n}$ basta notar que a soma dos 2n primeiros termos é a soma dos n primeiros termos da série divergente $\Sigma \frac{1}{n}$ para garantirmos que a série é divergente; para $\Sigma \frac{1+(-1)^n}{n^2}$, a soma dos 2n primeiros é a soma dos n primeiros termos de $\Sigma \frac{1}{2n^2}$ (conv.) e portanto a série converge.

5) Demonstre que, sendo f função contínua incessantemente crescente em [a,b], a equação $f(x) = -k (f(a) \le k \le f(b))$ admite uma solução única x_0 .

R: Por ser continua em [a,b] $\exists x_0 \in Ja, b [f(x_0) = k]$ mas como é incessantemente crescente é $\forall x \neq x_0 f(x) \neq f(x_0) = k$ e portanto x_0 é a única solução.

 Prove que sendo f função periódica, também f' é periódica.

Se f não-constante tem o período μ , é necessário que f' tenha o período μ ? Porquê?

R: $f(x + \mu) = f(x) \Longrightarrow f'(x + \mu) = f'(x)$ e portanto f' também é periódica.

Supondo que a derivada tinha o periodo $\mu_1 < \mu$, seria $\mu = m \mu_1$ e viria $f'(x + \mu_1) = f'(x)$, o que implicaria $f(x + \mu_1) = f(x) + K$.

Então, obter-se-ia $f(x + m \mu_1) = f(x) + Km$ ou $f(x + \mu) = f(x) + Km$ donde resultaria Km = 0 ou K = 0. Mas então seria $f(x + \mu_1) = f(x)$ o que é contrário à hipótese de ser μ o período de f. Logo a derivada f' tem o mesmo período de f.

I. S. C. E. F. — MATEMÁTICAS GERAIS — 1.ª cadeira — Exame final — Ano lectivo 1969-70 — Ponto n.º 3.

5775 - 1) Sendo n inteiro positivo, prove que

$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{5n} + \left(\frac{-1-i\sqrt{3}}{2}\right)^{5n} = 2.$$

R.:

$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{5n} = \left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^{5n} =$$
$$= \left(cis\frac{2\pi}{3}\right)^{5n} = cis2n\pi = 1$$

$$\left(\frac{-1-i\sqrt{3}}{2}\right)^{5n} = \left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^{5n} =$$
$$= \left(cis\frac{4\pi}{3}\right)^{5n} = cis4n\pi = 1$$

logo

$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{5n} + \left(\frac{-1-i\sqrt{3}}{2}\right)^{5n} = 2.$$

 A é o espaço métrico com a distância definida do modo seguinte:

$$d(x,y) = \begin{cases} 0 & (x=y) \\ 1 & (x \neq y) \end{cases}.$$

Seja X⊆A. X é aberto? É !echado? É limitado? Justifique as respostas.

Tomando o conjunto linear

$$X = \{1, 2, 3\} \cup \left\{x \in R : x = \frac{e^n}{n} (n = 1, 2, \dots)\right\},$$

indique int X, ext X, front X, sup X e inf X. O conjunto X é fechado? É aberto? Justifique as respostas.

R.: Atendendo a que $V_{\epsilon}(a) = |a| (\epsilon \leq 1)$ e $V_{\epsilon}(a) = X (\epsilon > 1)$, é fácil conctuir que X é aberto e portanto não é fechado. É claro que o conjunto X é limitado pois $V_{\epsilon}(a) = X (\epsilon > 1)$.

Para o conjunto linear apresentado tem-se: int $X = \emptyset$, ext $X = R - \{1, 2, 3\} \cup \left\{x : x = \frac{e^n}{n}\right\}$, front X = X, sup $X = +\infty$, inf X = 0 e X é fechado.

3) Supondo que $u_n - v_n \to 0$ e que $1/v_n$ é sucessão limitada, prove que $\lim u_n/v_n = 1$. Dê um exemplo de sucessões u_n e v_n para as quais $u_n - v_n \to 0$ mas $\lim u_n/v_n \neq 1$.

Calcule
$$\lim_{n=\infty} \left(1+\frac{1}{n^n}\right)^{e^n}$$
.

R.:

$$\lim (\mathbf{u}_{n} - \mathbf{v}_{n}) = 0 \Longleftrightarrow \mathbf{u}_{n} - \mathbf{v}_{n} = \alpha_{n} (\alpha_{n} \to 0) \Longleftrightarrow$$

$$\Longleftrightarrow \mathbf{u}_{n} = \mathbf{v}_{n} + \alpha_{n} \Longleftrightarrow \frac{\mathbf{u}_{n}}{\mathbf{v}_{n}} = 1 + \alpha_{n} \cdot \frac{1}{\mathbf{v}_{n}}$$

donde se conclui fàcilmente, em consequência da hipótese sobre $1/v_n$, que $\frac{u_n}{v_n} \rightarrow 1$.

Com
$$\mathbf{u}_n = 2/n$$
 e $\mathbf{v}_n = 1/n$, vem $\mathbf{u}_n - \mathbf{v}_n = \frac{1}{n} \to 0$

mas, no entanto, $\lim \frac{u_n}{v_n} = 2$ porque $1/v_n$ não é limitada.

Atendendo a que

$$\begin{split} \lim e^n \log \left(1 + \frac{1}{n^n}\right) = & \lim e^n \eta \frac{1}{n^n} = \lim \left(\frac{e}{n}\right)^n = 0, \\ \left(1 + \frac{1}{n^n}\right)^{e^n} & \to 1. \end{split}$$

4) Seja $\Sigma a_n (a_n \ge 0)$ uma série convergente e $b_n (b_n \ge 0)$ uma sucessão limitada. Mostre que a série $\Sigma a_n b_n$ é convergente.

Dada a série $\sum_{i=1}^{\infty} \frac{(2x+1)^n}{n(n+2)}$, determine o intervalo de convergência e a natureza nos extremos desse intervalo.

R.: Como $\frac{a_n b_n}{a_n} = b_n < K$, então a convergência de Σa_n implica a da série $\Sigma a_n b_n$.

 $\begin{array}{c|c} \textit{Como} & \left| \frac{u_n + 1}{u_n} \right| \rightarrow (2 \; x + 1) \;, \; \textit{a série dada converge} \\ \textit{absolutamente para} & |2 \; x + 1 | < 1 \; (-1 < x < 0) \; \textit{e} \\ \textit{diverge para} & |2 \; x + 1 | > 1 \; (x > 0 \ \ \, x < -1) \;. \end{array}$

Para x = 0, obtém-se a série $\sum_{i=1}^{\infty} \frac{1}{n(n+2)}$ absolutamente convergente e, para x = -1, vem

$$\sum_{1}^{\infty} (-1)^{n} \frac{1}{n (n+2)}$$

que é também absolutamente convergente.

5) Sendo f função contínua e biunívoca em [a,b], prove que f é incessantemente crescente ou decrescente em [a,b].

R.: Sendo f biunívoca em [a,b], vem $f(a) \neq f(b)$. Suponhamos que f(a) < f(b). Provaremos que $f \notin crescente$ em [a,b].

Sejam $x_1, x_2 \in [a, b]$ tais que $x_1 < x_2$. Deveremos ter $f(x_1) < f(x_2)$. Com efeito, se fosse $f(x_1) = f(x_2)$, a função não era biunívoca. Se fosse $f(x_1) > f(x_2)$, duas hipóteses teríamos de considerar: $f(x_2) < f(a)$ e $f(x_2) > f(a)$. No primeiro caso, vinha $f(x_2) < f(a) < f(b)$ e portanto existiria $x \in]x_2$, a [tal que f(x) = f(a), o que é absurdo em face da biunivocidade; no segundo caso, ter-se-ia $f(a) < f(x_2) < f(x_1)$ e, anàlogamente, existiria $x \in]a, x_1[$ tal que $f(x) = f(x_2)$, o que é absurdo pela mesma razão.

Logo, podemos efectivamente concluir que

$$\forall x_1, x_2 \in [a, b] \ x_1 < x_2 \Longrightarrow f(x_1) < f(x_2).$$

Anàlogamente se provaria a proposição na hipótese f(a) > f(b).

6) Sendo k parâmetro real e sabendo que a equação da tangente à curva representativa de $y = \frac{x+k}{x}$ é x-4y-4=0, ache o valor do parâmetro k e as coordenadas do ponto de tangência.

R.:
$$y' = -\frac{k}{x^2}$$
 e portanto terá de ser
$$\begin{cases} -\frac{k}{x^2} = \frac{1}{4} \\ y = 1 + \frac{k}{x} \end{cases}$$
,

sistema cuja solução é

$$\begin{cases} k = -4 \\ y = 0 \\ x = 4 \end{cases}.$$

I. S. C. E. F. — MATEMÁTICAS GERAIS — Exame final — Ano lectivo de 1969/70 — Epoca de Outubro — Ponto n.º 4 — 1-10-1970.

5776 -1) Demonstre que $(A-C) \cup (B-D) \subseteq$ $\subseteq (A \cup B) - (C \cap D)$. Dê um exemplo em que se tenha $(A-C) \cup (B-D) = (A \cup B) - (C \cap D)$.

R:

$$(\mathbf{A} - \mathbf{C}) \cup (\mathbf{B} - \mathbf{D}) = (\mathbf{A} \cap \widetilde{\mathbf{C}}) \cup (\mathbf{B} \cap \widetilde{\mathbf{D}}) = (\mathbf{A} \cup \mathbf{B}) \cap (\mathbf{C} \cup \mathbf{D}) = (\mathbf{C} \cap \mathbf{D}) \cap (\mathbf{C} \cap \mathbf{D}) \cap (\mathbf{C} \cap \mathbf{D})$$

Tomando

$$U = \{1, 2, 3, 4, 5\}, A = \{1, 2\}, B = \{2, 3, 4\},$$

 $C = \{2, 3\}, D = \{1, 2, 3\}$

vem

$$(A - C) \cup (B - D) = (A \cup B) - (C \cap D) = |1, 4|.$$

2) Sendo X subconjunto do espaço métrico A, prove que int $X = \operatorname{est} \widetilde{X}$ e front $X = \operatorname{front} \widetilde{X}$.

Determine $a \in b$ por forma que o conjunto linear $X = \{3, a \} \cup \{x \in R : x = \frac{b n}{n+2} (n=1, 2, \cdots)\}$ tenha

o derivado $X' = \{3\}$ e inf X = 1/2. Qual é o sup X? X é fechado? É aberto? Justifique as respostas.

R: $a \ p. \ int. \ X \Longrightarrow V_{\epsilon}(a) \subseteq X \Longrightarrow V_{\epsilon}(a) \cap \widetilde{X} = \emptyset \Longrightarrow$ $\Longrightarrow a \ p. \ ext. \ X; \ a \ p. \ ext. \ \widetilde{X} \Longrightarrow V_{\epsilon}(a) \cap \widetilde{X} = \emptyset \Longrightarrow$ $\Longrightarrow V_{\epsilon}(a) \subseteq X \Longrightarrow a \ p. \ int. \ X.$

Se a é ponto fronteiro de X (de \widetilde{X}) em qualquer sua vizinhança, por mais pequeno que seja o valor de ε , há sempre pontos de X e de \widetilde{X} . Logo, a também é ponto fronteiro de \widetilde{X} (de X).

Como $\lim_{n=\infty} \frac{b n}{n+2} = b$, terá de ser b=3. inf $X=-1/2 \Longrightarrow a = 1/2$; sup X=3 e X é fechado.

3) Dada a sucessão u_n, suponha que u_{2n}, u_{2n+n} e u_{3n} são convergentes. Prove que u_n converge. Diga qual é o conjunto dos sublimites da sucessão

$$1, \frac{1}{2}, 1, \frac{1}{2}, \frac{1}{3}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$$

Indique, justificando, os seus limites máximo e mínimo.

R: Supondo que $u_{2n} \rightarrow u$, $u_{2n+1} \rightarrow v$ e $u_{3n} \rightarrow w$, notemos que 3n é número par (quando n for par) ou impar (quando n for impar) e portanto as subsucessões de u_{3n} que se obtêm com n par e n impar são, respectivamente, subsucessões de u_{2n} e u_{2n+1} . Podemos então garantir que u = v = w e portanto u_n converge para u.

O conjunto dos sublimites da sucessão dada é

$$\left\{1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots,0\right\}$$

Os limites máximo e mínimo são, respectivamente, 1 e 0.

4) Prove que, sendo $u_n > -1 \ (n \ge 0)$, a convergência de $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{\infty} u_n^2$ implica a convergência de $\sum_{n=0}^{\infty} \log (1 + u_n)$.

Discuta a natureza da série

$$\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdots (2n+1)}{2 \cdot 4 \cdots 2n} (1-x^2)^n.$$

$$\begin{split} R: & \mbox{ Notando que } u_n \rightarrow 0 \;, \; \mbox{log} \; (1+u_n) = u_n - \lambda \; u_n^2 \\ & \mbox{onde } \lambda \rightarrow \frac{1}{2} \; \mbox{ quando } u_n \rightarrow 0 \;. \end{split}$$

Tem-se então
$$\sum\limits_{0}^{\infty}\log\left(1+u_{n}\right)=\sum\limits_{0}^{\infty}u_{n}-\sum\limits_{0}^{\infty}\lambda\,u_{n}^{2}.$$
Ora como $\sum\limits_{0}^{\infty}u_{n}$ converge e $\sum\limits_{0}^{\infty}\lambda\,u_{n}^{2}$ também converge, porque $\frac{\lambda\,u_{n}^{2}}{u_{n}^{2}}\rightarrow\frac{1}{2}\neq0$, ∞ , a série $\sum\limits_{0}^{\infty}\log\left(1+u_{n}\right)$ (soma de séries convergentes) também converge.

Para a série
$$\sum_{1}^{\infty} \frac{1 \cdot 3 \cdots (2 n + 1)}{2 \cdot 4 \cdots 2 n} (1 - x^{2})^{n} \text{ vem}$$

$$\left| \frac{u_{n+1}}{u_n} \right| = \frac{2n+3}{2n+2} |1-x^2| \to |1-x^2|$$

Como

$$|1-x^2| < 1 \iff -1 < 1-x^2 < 1 \iff$$

$$\iff \begin{cases} 1-x^2 < 1 \iff x \neq 0 \\ 1-x^2 > -1 \iff -\sqrt{2} < x < \sqrt{2} \end{cases}$$

a série converge para $-\sqrt{2} < x < 0$ e $0 < x < \sqrt{2}$. Por outro lado,

$$|1-x^2| > 1 \iff \begin{cases} 1-x^2 > 1 \text{ (impossivel)} \\ 1-x^2 < -1 \iff x < -\sqrt{2} \lor x > \sqrt{2} \end{cases}$$

e portanto a série diverge para $x < -\sqrt{2}$ e $x > \sqrt{2}$.

Para x = 0, vem a séri $\sum_{1}^{e} \frac{1 \cdot 3 \cdots (2 n + 1)}{2 \cdot 4 \cdots 2 n}$ que é divergente pois $\frac{u_{n+1}}{u_n} = \frac{2n+3}{2n+1} \rightarrow 1+0$.

Para
$$x = \pm \sqrt{2}$$
 vem $\sum_{1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdots (2 n + 1)}{2 \cdot 4 \cdots 2 n}$
e, como $\left| \frac{u_{n+1}}{u_n} \right| = \frac{2 n + 3}{2 n + 2} > 1$, o seu termo geral

não tende para zero e portanto a série diverge.

5) Seja f continua em [a, b] e admita que $f([a,b]) \subseteq [a,b]$. Prove que, sob estas condições, a equação f(x) = x tem sempre uma raiz em [a, b]. Exemplifique com $f(x) = \sqrt{x}$ em [0,4].

R.: Nos casos em que f(a) = a ou f(b) = b a proposição é óbvia. Se for f(a) > a e f(b) < b a função g(x) = f(x) - x toma sinais contrários em a e b e portanto g (x) anula-se num ponto c interior (teorema de Bolzano-Cauchy): g(c) = 0 ou f(c) = c.

Com f(x) = \sqrt{x} em [0,4] a equação $\sqrt{x} = x$ tem as raizes x = 0 e x = 1.

6) A função F satisfaz à condição F(c-0)< F(c) < F(c+0) no ponto interior c do seu domínio. Estude a existência de F1 (c).

R.:
$$F'_{\bullet}(c) = \lim_{x=c-0} \frac{F(x) - F(c)}{x - c} = +\infty$$
$$F'_{d}(c) = \lim_{x=c+0} \frac{F(x) - F(c)}{x - c} = +\infty$$

Portanto, no ponto x = c vem $F'(c) = +\infty$.

I. S. C. E. F. - MATEMÁTICAS GERAIS - Exame final -Ano lectivo de 1969/70 - Epoca de Outubro - Ponto n.º 5 - 1-10-1970.

5777 - 1) Considere as aplicações de R em Rdefinidas por $f(x) = x^5$, g(x) = x - 1 e h(x) = x. Determine $f \circ g$, $g \circ f$, $(f \circ g) \circ h$, $f \circ (g \circ h)$, $g^{-1} \circ f^{-1} \in (f \circ g)^{-1}$.

R.: $f \circ g = (x-1)^5$, $g \circ f = x^5 - 1$, $(f \circ g) \circ h =$ $= (x-1)^5$, fo $(g \circ h) = (x-1)^5$ g⁻¹ o f⁻¹=1+ \sqrt{y} , $(f \circ g)^{-1} = 1 + \sqrt{v}$.

- 2) Prove as proposições seguintes:
- Sendo a um número real qualquer eX = x:xé racional $\wedge x < a$, então $a = \sup X$.
- ii) Sendo A conjunto linear não-vazio limitado inferiormente e B o conjunto dos números -x tais que x e A, então B é superiormente limitado e inf $A = -\sup B$.

Indique o conjunto derivado, o supremo e o ínfimo do conjunto linear

$$X = \left\{ x : x = (-1)^n + \frac{1}{m} (m, n = 1, 2, \dots) \right\}.$$

R.:

- i) O número a é majorante de X e, como ∀ δ> > 0, $\exists x \in Q$ $a - \delta < x < a$, é evidente que $a = \sup X$
- ii) Sendo 1 = inf A, tem-se ∀x e Ax≥1 e $\forall \delta > 0, \exists x' \in A: x' < 1 + \delta. Portanto,$ $\forall -x \in B - x \leq -1 \in \forall \delta > 0, \exists -x' \in B$ $-x' > -1 - \delta$. Logo -1 é o sup B.

Para
$$X = \left\{ x : x = (-1)^n + \frac{1}{m} (m, n = 1, 2, \dots) \right\}$$

tem-se $X' = \left\{ -1, 1 \right\} \cup X, \text{ inf } X = -1, \text{sup } X = 2.$

3) Mostre que, sendo $u_n > 0$ e $u_{n+1}/u_n \le k < 1$ (k constante) $\forall n \in N$, então $\lim u_n = 0$. O que se pode afirmar quando se sabe apenas que $u_{n+1}/u_n < 1$? Justifique.

Sendo $u_n = n!/n^n$, indique o $\lim u_n$ a partir de $\lim u_{n+1}/u_n$.

R.: $\mathbf{u}_{a+1}/\mathbf{u}_n \leq k < 1 \Longrightarrow \sum \mathbf{u}_n$ converge $\Longrightarrow \mathbf{u}_a \to 0$.

Quando $\mathbf{u}_{n+1}/\mathbf{u}_n < 1$ apenas se pode afirmar que $\mathbf{u}_{n+1} < \mathbf{u}_n$ e portanto $\mathbf{u}_a \to \mathbf{u} \geq 0$.

Para $u_n = n!/n^n$ vem $\lim \frac{u_{n+1}}{u_n} = \frac{1}{e} < 1$ e portanto $\lim u_n = 0$.

4) Sendo $a_n > 0$ $(n = 1, 2, \cdots)$ e $b_n = (a_1 + a_2 + \cdots + a_n)/n$, prove que $b_1 + b_2 + \cdots + b_n > a_1$ $\left(1 + \frac{1}{2} + \cdots + \frac{1}{n}\right)$.

Tomando a série $\sum a_n$, aproveito o resultado anterior para justificar que $\sum b_n$ é sempre divergente.

Estude a natureza da série

$$\Sigma \frac{(p+1)(p+2)\cdots(p+n)}{(q+1)(q+2)\cdots(q+n)}$$
.

R: Como

$$b_{1} = a_{1}$$

$$b_{2} = \frac{a_{1} + a_{2}}{2}$$

$$b_{3} = \frac{a_{1} + a_{2} + a_{3}}{3}$$

$$\vdots$$

$$\vdots$$

$$b_{n} = \frac{a_{1} + a_{2} + \dots + a_{n}}{3}$$

resulta imediatamente

$$b_1 + b_2 + \cdots + b_n > a_1 \left(1 + \frac{1}{2} + \cdots + \frac{1}{n} \right)$$
.

Esta desigualdade serve para provar que

$$b_1 + b_2 + \cdots + b_n \rightarrow + \infty$$

pois

$$1+\frac{1}{2}+\cdots+\frac{1}{n}\to+\infty$$
.

Para estudar a série dada, notemos que

$$\frac{a_{n+1}}{a_n} = \frac{p+n+1}{q+n+1} \to 1$$

e o critério da razão não explica a natureza da série. Como

$$n\left(\frac{a_n}{a_{n+1}}-1\right) = \frac{(q-p)\,n}{n+p+1} \rightarrow q-p \;,$$

o critério de Raabe, permite concluir que a série converge com q > p+1 e diverge com $q \le p+1$.

5) Seja f contínua no intervalo $[0, 2\pi]$ tal que $f(0) = f(2\pi)$. Prove que existe um ponto c nesse intervalo tal que $f(c) = f(c+\pi)$. Sugestão: considere a função auxiliar $g(x) = f(x) - f(x+\pi)$.

R: Observemos que $g(0) = f(0) - f(\pi)$ e $g(\pi) = f(\pi) - f(2\pi) = f(\pi) - f(0)$. Se $f(0) = f(\pi)$, a proposição é óbvia. Com $f(0) \neq f(\pi)$, a função continua g(x) tem sinais contrários em $0 \in \pi$ e o teorema de Bolzano-Cauchy garante que existe um ponto c entre $0 \in \pi$ tal que $g(c) = f(c) - f(c + \pi) = 0$.

6) Seja

$$f(x) = \begin{cases} \frac{x-1}{\sqrt{x}-1} & (x \neq 1) \\ 2 & (x = 1) \end{cases}$$

Prove que f é diferenciável para x = 1.

R: Como

$$f'(1) = \lim_{x=1} \frac{\frac{x-1}{\sqrt{x-1}} - 2}{x-1} = \lim_{x=1} \frac{x-1-2(\sqrt{x}-1)}{(x-1)(\sqrt{x}-1)} = \lim_{x=1} \frac{(\sqrt{x}-1)^2}{(x-1)(\sqrt{x}-1)} = \lim_{x=1} \frac{1}{\sqrt{x}+1} = \frac{1}{2},$$

a função é diferenciável.

I. S. C. E. F. — MATEMÁTICAS GERAIS — Exame final— Ano lectivo de 1969-70 — Época de Outubro — Ponto n.º 6 — 6-10-1970.

5778 — 1) Prove as seguintes propriedades no conjunto R dos números reais:

$$i) - (-a) = a$$

ii)
$$a \stackrel{\geq}{=} b \iff -a \stackrel{\leq}{=} -b$$
.

R: i) Dado o número real $a = [A_1, A_2]$, tem-se $-a = [-A_2, -A_1]$ e é claro que $-(-a) = [A_1, A_2]$.

ii) Sendo $a = [A_1, A_2]$ e $b = [B_1, B_2]$, tem-se $a = b \iff A_1 = B_1 \land A_2 = B_2$ mas então também $-A_1 = -B_1 \land -A_2 = -B_2$ o que mostra que -a = -b.

Supondo, por exemplo, a > b tem-se $A_1 \cap B_2 \neq \emptyset$ o que indica que

$$-b = [-B_2, -B_1] > [-A_2, -A_1] = -a.$$

2) Prove por indução que todo o conjunto linear finito tem mínimo e máximo. Mostre que

$$\max \{a, b\} = \frac{1}{2} [a + b + |a - b|]$$

$$\min \{a, b\} = \frac{1}{2} [a + b - |a - b|]$$

e prove também que

$$\max |a+c,b+d| \leq \max |a,b| + \max |c,d|.$$

Ache o supremo e o ínfimo de

$$\{x \in R : (x-a)(x-b)(x-c)(x-d) < 0\}$$

com

$$a < b < c < d$$
.

R.: A proposição é óbvia para um conjunto de dois elementos. Supondo que a propriedade é verdadeira para um conjunto de m elementos, se tomarmos um conjunto com m + 1 elementos e considerarmos um seu subconjunto de m elementos, o mínimo existe. De facto, é o menor de dois elementos: o mínimo do subconjunto e o elemento que lhe não pertence. Mutatis mutandis, o raciocínio aplica-se ao máximo.

Supondo

$$a \le b$$
, $max |a,b| = a = \frac{1}{2} (a + b + a - b)$.

Com a≤b, vem

$$max \{a, b\} = b = \frac{1}{2}(a + b + b - a).$$

Anàlogamente se prova que

$$min\{a,b\} = \frac{1}{2}[a+b-|a-b|].$$

$$= \frac{1}{2} [(a+c) + (b+d) + | (a+c) - (b+d) |] \le$$

$$\le \frac{1}{2} [(a+c) + (b+d) + | a-b | + | c-d |] =$$

$$= \frac{1}{2} [a+b+|a-b|] + \frac{1}{2} [c+d+|c-d|] =$$

max | a + c, b + d | =

= max |a,b| + max |c,d|.

Para o conjunto

$$X = \{x \in R : (x - a) (x - b) (x - c) (x - d) < 0\},$$

 $vem \ sup \ X = d \ e \ inf \ X = a.$

3) Dada a sucessão $a, a + b, 1 + 1/2, a, a + b, 1 + 1/3, a, a + b, 1 + 1/4, \cdots$ determine os números a = b por forma que a sucessão seja convergente. Justifique.

Admitindo que $u_n \to u$ e $v_n \to v$, mostre que, exceptuando os casos $(u=1, v=\infty)$, $(u=\infty, v=0)$ e (u=0, v=0), a sucessão $w_n = u_n^{v_n}$ $(u_n > 0)$ possui o limite u^v .

Calcule
$$\lim_{n \to \infty} \left(1 + 2 \operatorname{tg} \frac{1}{n}\right)^n$$
.

R.: a = 1 e b = 0.

Notando que $\log w_n = v_n \log u_n \rightarrow v \log u$, fàcilmente se conclui que $w_n \rightarrow u^v$.

$$n \log \left(1 + 2 t g \frac{1}{n}\right) = 2 n n t g \frac{1}{n} =$$

$$= 2 n \frac{sen \frac{1}{n}}{\frac{1}{cos \frac{1}{n}}} \cdot \frac{1}{cos \frac{1}{n}} \rightarrow 2$$

e portanto

$$\left(1+2\ tg\frac{1}{n}\right)^n\to e^2.$$

- 4) Dada a série Σu, demonstre que
- i) $|u_{n+1}/u_n| \le h < 1 \Longrightarrow \Sigma u_n$ é absolutamente convergente.
- ii) $|u_{n+1}/u_n| \ge 1 \Longrightarrow \Sigma u_n$ é divergente.

Estude a natureza da série de termo geral

$$u_n = \frac{a^n}{(1+a)(1+a^2)\cdots(1+a_n)}(a>0).$$

R.:

 $\begin{array}{l} \left| \; \mathbf{u_{n+1}} / \mathbf{u_n} \; \right| \leq h < 1 \Longrightarrow \Sigma \; \left| \; \mathbf{u_n} \; \right| \; conv. \implies \Sigma \; \mathbf{u_n} \; conv. \; \; absol. \\ \left| \; \mathbf{u_{n+1}} / \mathbf{u_n} \; \right| \geq 1 \Longrightarrow \Sigma \; \left| \; \mathbf{u_n} \; \right| \; div \Longrightarrow \mathbf{u_n} \; \; n \tilde{a}o \; \; \acute{e} \; \; evanescente \\ \Longrightarrow \Sigma \; \mathbf{u_n} \; div \; . \end{array}$

$$\frac{u_{n+1}}{u_n} = \frac{a}{1+a^{n+1}} \to \begin{cases} a \ (a < 1) \\ 1/2 \ (a = 1) \\ 0 \ (a > 1) \end{cases}$$

e o critério da razão permite concluir que a série converge para todos os valores de a.

5) Sendo f monótona em [α, b], justifique que f só pode possuir descontinuidades de 1.ª espécie nesse intervalo. Estude a continuidade da função

$$f(x) = \begin{cases} 0 & (x \text{ rac.}) \\ x & (x \text{ irrac.}) \end{cases}.$$

R.: Uma função monótona tem sempre limites laterais nos pontos de [a,b] e portanto só pode possuir descontinuidades de 1.ª espécie.

A função

$$f(x) = \begin{cases} 0 & (x \ rac.) \\ x & (x \ irrac.) \end{cases}$$

é continua para x = 0 pois | f(x) - f(0) | = | x |. Em todos os outros pontos apresenta descontinuidades de 2.ª espécie.

6) Considere a função

$$g(x) = \begin{cases} \sqrt{-x} & (x < 0) \\ \sqrt{x} & (x \ge 0) \end{cases}$$

e calcule g'(0). Esboce a imagem da função na vizinhança de x = 0.

R.: Notando que

$$\frac{g(x) - g(0)}{x} = \begin{cases} -\frac{1}{\sqrt{-x}} & (x < 0) \\ \frac{1}{\sqrt{x}} & (x > 0) \end{cases}$$

resulta $g'(0) = \mp \infty$.

I. S. C. E. F — MATEMÁTICAS GERAIS — Exame final —
Ano lectivo de 1969-70 — Època de Outubro —
Ponto n.º 7 — 6-10-1970.

5779 - 1) Prove a seguinte propriedade: se $a, b \in R$ e a > b, então $a + c > b + c \forall c \in R$.

R.: Com efeito, seja $a = [A_1, A_2]$, $b = [B_1, B_2]$, $c = [C_1, C_2]$, $a + c = [D_1, D_2]$ $e \ b + c = [E_1, E_2]$. Como a > b, existe $a'_1 e A_1$ $e \ b'_2 e B_2$ tais que $a'_1 > b'_2$ ou $a'_1 - b'_2 > 0$. Então, poderemos determinar $c'_1 e C_1$ $e \ c_2 e C_2$ tais que $c'_2 - c'_1 < a'_1 - b'_2$ ou $b'_2 + c'_2 < a'_1 + c'_1$. Mas $b'_2 + c'_2 e E_2$ $e \ a'_1 + c'_1 e D_1$ e portanto a + c > b + c.

2) Prove que λ é ponto de acumulação de A se e só se em qualquer vizinhança de λ existe pelo menos um elemento de A distinto de λ .

Mostre que sup $A = \sup \overline{A}$, onde \overline{A} designa o fecho de A. Indique dois conjuntos A e B tais que $A \cap B = \emptyset$ e $\overline{A} \cap \overline{B} \neq \emptyset$.

Indique o ínfimo, o supremo e o fecho do conjunto $X = \{x \in R : x = n^{(-1)^m} (m, n = 1, 2, \cdots)\}.$

R.: Se λ é ponto de acumulação de A, numa $V_{\epsilon}(\lambda)$, por menor que seja ϵ , existe uma infinidade de elementos de A e portanto existe sempre um elemento de A distinto de λ . Reciprocamente, se em qualquer $V_{\epsilon}(\lambda)$ existe um elemento de A distinto de λ , há uma infinidade de elementos de A em qualquer $V_{\epsilon}(\lambda)$.

Notando que $\overline{A} = A \cup A'$, basta examinar as hipóteses sup $\overline{A} > \sup A$ e sup $A > \sup \overline{A}$. No primeiro caso haveria $\overline{a} > \sup A$, o que é absurdo; no segundo caso, haveria $a > \sup \overline{A}$ que é uma contradição. Logo $\sup A = \sup \overline{A}$.

Sendo A =]a, b[e B =]b, c] vem $A \cap B = \emptyset$ e $\overline{A} \cap \overline{B} = \{b\}$. inf X = 0, sup $X = +\infty$, $\overline{X} = X \cup \{0\}$.

- Indique, justificando, quais das proposições seguintes são verdadeiras:
 - i) Se $u_{2n} \rightarrow u$ e $u_{2n+1} \rightarrow v$, u e v são os únicos sublimites de u_n .
 - ii) Se o conjunto dos termos de uma sucessão não tem máximo nem mínimo, a sucessão é divergente.
 - iii) Se $\forall n \in N$ $u_n > 0 \land u_n \to 0$, então u_n é decrescente.

Calcule
$$\lim n\left(\sqrt[3]{2+\frac{1}{n}}-\sqrt[3]{2}\right)$$
.

R.: A proposição i) é òbviamente verdadeira. Para ii) basta notar que o infimo e o supremo de (u_n) são pontos de acumulação, e portanto sublimites de u_n , para provar que ii) é verdadeira. Para iii), observemos que $u_n = \frac{2+(-1)^n}{n} > 0$ é evanescente e no entanto não é decrescente. Logo iii) é falsa.

$$n\left(\sqrt[3]{2+\frac{1}{n}} - \sqrt[3]{2}\right) = n\sqrt[3]{2}\left(\sqrt[3]{1+\frac{1}{2n}} - 1\right) =$$

$$= n\sqrt[3]{2}\frac{1}{3}\xi\frac{1}{2n} \to \frac{\sqrt[3]{2}}{6}.$$

4) Se a série $\sum a_n (a_n \ge 0)$ é divergente e S_n designa a soma dos seus n primeiros termos, prove que $\sum (\sqrt{S_{n+1}} - \sqrt{S_n})$ também diverge.

Estude a natureza das séries

$$\sum_{n=0}^{\infty} (-1)^{n+1} e^{-n \operatorname{sen} x} \in \sum_{n=0}^{\infty} \frac{1}{n! \, x^n}.$$

R.: Se Σa_n diverge, então $S_n \to +\infty$ e a série de Mengoli $\Sigma (\sqrt{S_{n+1}} - \sqrt{S_n})$ também diverge.

Notando que $\sum_{0}^{\infty} (-1)^{n+1} e^{-n \sin x}$ é série geométrica de razão $-e^{-\sin x}$, ela será convergente se e só se $\frac{1}{e^{\sin x}} < 1$ ou sen x > 0, isto é, para $2 k \pi < x < < (2 k + 1) \pi$. A série de potências $\sum_{1}^{\infty} \frac{1}{n! \ x^n}$ converge absolutamente para $x \neq 0$.

5)

- Dê exemplo de uma função contínua num conjunto fechado limitado que não tome todos os valores desde o mínimo ao máximo.
- ii) Represente geomètricamente uma função f contínua em [a,b] excepto no ponto interior c onde possui uma descontinuidade de primeira espécie com f(c-0) < f(c) < f(c+0). Calcule f'(c) para esta função.

R.: i)
$$f(x) =\begin{cases} 1 & (0 \le x \le 1) \\ 2 & (x = 2) \end{cases}$$

ii)

$$f'_d(c) = +\infty$$
 e $f'_o(c) = +\infty$, isto e, $f'(c) = +\infty$.

6) Prove que, sendo g diferenciável para x = a, então

$$\lim_{h=0} \frac{g(a+h) - g(a-h)}{2h} = g'(a)$$

R.: Por definição de diferenciabilidade podemos escrever

$$g(a + h) - g(a) = h[g'(a) + \alpha]$$
 ($\lim_{h=0}^{l} \alpha = 0$)
 $g(a - h) - g(a) = -h[g'(a) + \beta]$ ($\lim_{h=0}^{l} \beta = 0$)

Subtraindo membro a membro, vem

$$g(a + h) - g(a - h) = 2 h g'(a) + h(\alpha + \beta)$$

014

$$\frac{g(a+h) - g(a-h)}{2h} = g'(a) + \frac{\alpha + \beta}{2},$$

o que prova a proposição.

Enunciados e soluções dos n.ºs 5773 a 5779 de Fernando de Jesus

I. S. T. - MATEMÁTICAS GERAIS - Ponto N.º 4-7-4-70.

5780 - 1) Justificando cuidadosamente as respostas, indique se são:

- a) reflexivas,
- b) simétricas,
- c) transitivas

as relações F, G e H, definidas em R pela forma seguinte:

$$x F y \iff |x - y| > 0$$

 $x G y \iff x^2 - y^2 \in Q$ (Q é o conjunto dos racionais)
 $x H y \iff \exists x = u y$.

Nos casos em que se trate de relações de equivalência, indique a classe de equivalência do elemento O (zero) e uma outra classe de equivalência, distinta desta.

2) Seja f a aplicação de R em si mesmo definida por

$$f(x) = \begin{cases} -x & \text{se } x < 0 \\ \frac{1}{x} & \text{se } x > 0 \end{cases}.$$

- a) Indique, justificando, se f é injectiva ou sobrejectiva.
- b) Dê exemplos concretos de um conjunto limitado (em R) cujo transformado por f seja ilimitado e de um conjunto ilimitado que f transforme num conjunto limitado.
 - c) Mostre que

$$(f \circ f)(x) = f(-x), \quad \forall x \in R$$

(considere separadamente os casos x>0, x=0, x<0).

Pondo $f_1 = f$ e, para todo o $n \in N$, $f_{n+1} = f_n \circ f$, aproveite o resultado anterior para determinar explicitamente a aplicação f_n .

- 3) Sendo u_n e v_n os termos gerais de duas sucessões de termos reais e $w_n = u_n + v_n$, indique, justificando, quais das proposições seguintes são necessàriamente verdadeiras e mostre, por meio de exemplos concretos que as restantes podem não o ser:
 - a) Se u, e v, são divergentes, w, também o é.
 - b) Se u, e v, são limitadas, w, também o é.
 - c) Se un e vn são ilimitadas, wn também o é.
 - d) Se u, e v, são crescentes, w, também o é.
 - e) Se u, e v, são monótonas, w, também o é.
- 4) a) Prove que, para que ce R seja ponto de acumulação do conjunto

$$A_1 \cup A_2 \cup \cdots \cup A_p$$

 $(p \in N)$ é necessário e suficiente que c seja ponto de acumulação de um, pelo menos, dos conjuntos A_1, A_2, \dots, A_n .

b) Se em vez de uma reunião de conjuntos, em número finito, se tratasse da reunião de uma infinidade de conjuntos, a condição seria ainda suficiente? E necessária? Justifique.

I. S. T. - MATEMÁTICAS GEHAIS - Ponto N.º 2-7-1-70.

5781 — 1) Justificando cuidadosamente as respostas, indique quais dos seguintes subconjuntos de R são

- a) abertos,
- b) fechados,
- c) limitados (em R):

$$A = \{x : \exists_{y \in R} x^2 + y^2 \le 0\}$$

$$B = \left\{ x : \frac{1}{x} \in Z \right\} \quad (Z \in \text{o conjunto dos inteiros})$$

$$C = |x:|x-1| + |x+1| > 4|.$$

2) Seja f a aplicação de R em si mesmo definida pela forma seguinte:

$$f(x) = \begin{cases} -x & \text{se } x \in Q \quad (Q \text{ \'e o conjunto dos racionais}) \\ \frac{1}{x} & \text{se } x \in R \setminus Q. \end{cases}$$

- a) Prove que f é bijectiva.
- b) Indique, justificando, quais são os valores de x que verificam a condição:

$$f(x) = x.$$

- c) Designando por A o transformado por f do intervalo [1,2], indique (quando possível) o supremo, o infimo, o máximo e o mínimo do conjunto A.
- d) Pondo $f_1=f$ e, para todo o $n \in N$, $f_{n+1}=f_n \circ f$, determine explicitamente a aplicação f_n .
- 3) Sendo u_n o termo geral de uma sucessão de termos reais e $v_n = u_n^2$, indique, justificando, quais das proposições seguintes são necessàriamente verdadeiras e mostre, por meio de exemplos concretos, que as restantes podem não o ser:
 - a) Se v, é convergente, u, também o é.
 - b) Se v, é divergente, u, também o é.
 - c) Se v. é majorada, u. é limitada.
 - d) Se v, é crescente, u, é crescente.
 - e) Se v, é crescente, u, é monótona.
- 4) Convencionemos dizer que um conjunto A⊂R é simétrico em relação à origem sse

$$\bigvee_{x \in R} (x \in A \Longrightarrow -x \in A)$$

e que um conjunto B⊂R é fechado a respeito da adição sse

$$\bigvee_{x,y\in R} (x\in B \land y\in B \Longrightarrow x+y\in B).$$

Nestas condições, sendo C um subconjunto de R, considere a relação G, em R, definida por

$$x G y \iff x - y \in C$$

e prove que:

- a) G é reflexiva sse 0 e C.
- b) G é simétrica sse C é simétrico em relação à origom.
- c) G é transitiva sse C é fechado a respeito da adição.

Enunciados de J. Campos Ferreira

Université Libre de Bruxelles — Faculté des Sciences Appliquées — Algèbre-Analyse.

1ère candidature.

5782 - 1. En quels points les fonctions suivantes sont-elles discontinues

a) f(x) = [x] où [x] représente la partie entière de x

$$b) \quad f(x) = \frac{1}{1 + 2\sin x}$$

c)
$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ -\frac{1}{x} & \text{si } x > 0. \end{cases}$$

- 2. Montrer que la fonction $y = \frac{1}{x}$ est continue sur l'intervalle]0,1[mais n'est pas uniformément continue.
- 3a) Montrer à l'aide de la définition de la dérivée que

$$(e^{ax})' = a e^{ax} \qquad a \in \mathbb{R}.$$

Application: Calculer les dérivées des fonctions suivantes à partir de a)

- 1. Sh x
- 2. Ch x
- 3. Th x
- 4. ln x.
- 4. Etudier la fonction y = |x| est-elle continue et dérivable en tout point x?
- 5. En quels points la fonction $y = |\cos x|$ est-elle non dérivable?
 - 6. Étudier la variation des fonctions suivantes

a)
$$\begin{cases} 0 \text{ si } x = 0 \\ \cos \frac{1}{x} \text{ si } x \neq 0 \end{cases}$$
 b)
$$\begin{cases} 0 \text{ si } x = 0 \\ x \cos \frac{1}{x} \text{ si } x \neq 0 \end{cases}$$
 c)
$$\begin{cases} 0 \text{ si } x = 0 \\ x^2 \cos \frac{1}{x} \text{ si } x \neq 0 \end{cases}$$
.

En quels points ces fonctions sont-elles continues? Dérivables? Continument dérivables? Représentez les sur un graphe.

1ère candidature.

5783 — 1. Calculer les dérivées partielles de la fonction.

$$f = (x y)^2$$

2. Calculer les dérivées partielles de la fonction $f = e^{\sin y/x}$.

3. Calculer les dérivées partielles d'ordre 1 de y par rapport aux variables indépendantes strictement positives x_1, x_2, x_3 , si

$$y = \sqrt{u^2 + v^2}$$
 et $u = \log x_1 \cdot x_2 \cdot x_3$ $v = e^{\sin(x_1 + x_2 + x_3)}$.

4. Calculler à 1/10 près
$$\frac{\partial f}{\partial x}$$
 (2.1) et $\frac{\partial f}{\partial y}$ (2.1) si $f(x,y) = \sqrt{x \sin y + \frac{x}{y}}$.

5. Soit X(t) une matrice dont les éléments $x_{ij}(t)$ sont des fonctions dérivables de t. Calculer

a)
$$\frac{d}{dt}X^{-1}$$
 b) $\frac{d}{dt}X^2$.

6. Calculer les dérivées partielles d'ordre 1 de la fonction

$$f(x,y,z)=x^{(yz)}.$$

7. Montrer que l'équation $y^3 + 5xy^2 + 10y - 10x^2 = 0$ définit, dans le voisinage de x = 0 une et une seule fonction réelle y(x).

Développer cette fonction y(x) en série de Taylor jusqu'au terme en x^5 inclus.

8. Si
$$\begin{cases} x = \varphi + \sin \varphi \\ y = 1 - \cos \varphi \end{cases}$$

sont les équations paramétriques d'une courbe plane d'équation cartésienne y = F(x), calculer F'(x) et étudier la variation de F'(x) pour $0 \le x \le 2\pi$.

9. Considérons la surface d'équation xy + yz - xz = 2.

Déterminer pour quelles valeurs de x et y il est possible d'appliquer le théorème des fonctions implicites. Si (x_0, y_0) est l'un de ces points, calculer (de deux manières: en explicitant ou en n'explicitant pas z en fonction de x et y) les dérivées partielles premières $\frac{\partial z}{\partial x}(x_0, y_0)$, $\frac{\partial z}{\partial y}(x_0, y_0)$ et la différentielle totale $dz(x_0, y_0)$.

10. Calculer la matrice jacobienne de u, v par rapport à x, y si u et v sont les fonctions définies implicitement par les relations:

$$\begin{cases} u^2 - v^2 + 2x + 3y = 0 \\ uv + x - y = 0. \end{cases}$$

1ère candidature.

5784 - 1. Démontrez que :

Si A et B sont des matricee carrées symétriques, alors A B est une matrice symétrique si et seulement si A et B commutent $(A \cdot B = B \cdot A)$.

2. Sans effectuer le produit, trouvez le rang de la matrice $C = A \cdot B$ où

$$A = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 & 3 \\ -4 & 0 & 5 \end{pmatrix}$.

- 3. On considère la transformation linéaire de l'espace vectoriel R^2 définie dans la base canonique par la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Montrer qu'il n'existe aucune base de R^2 par rapport à laquelle la matrice de cette transformation linéaire soit diagonale.
- 4. Trouver les valeurs propres et les vecteurs correspondants de la matrice $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$.
 - 5. Soit $\int \sin^m x \cos^n x \, dx = I_{m, \xi_n}$.

Etablir la formule de réduction

$$(m+n) I_{m,n} = -\sin^{m-1} x \cos^{n+1} x + (m-1) I_{m-9,n}$$

$$\forall m, n \text{ sauf si } m = -n = 1.$$

Application: Calculer $I_{3,2} = \int \sin^3 x \cos^2 x \, dx$.

6. Démontrer la forme de récurrence

$$n I_n = -\sin^{n-1} x \cos x + (n-1) I_{n-2}$$

avec

$$I_n = \int \sin^n x \, dx \qquad (n \neq -1, +1)$$

Application: $\int \sin^7 x \, dx$.

7. Démontrer

$$\int_0^{\pi/2} \sin^n x \, dx =$$

$$= \begin{cases} \frac{(n-1)!!}{n!!} & \text{si } n \text{ est un entier positif impair} \\ \frac{(n-1)!!}{n!!} \frac{\pi}{2} & \text{si } n \text{ est un entier positif pair} \\ n!! = n(n-2)(n-4)\cdots. \end{cases}$$

Enunciados de F. et J. Teixeira

BOLETIM BIBLIOGRÁFICO

Nesta secção, além de extractos de críticas aparecidas em revistas estrangeiras, serão publicadas críticas de livos e outras publicações de Matemática de que os Autores ou Editores enviarem dois exemplares à Redacção.

185 — NICOLAE POPESCU — Categorii Abeliene — Editura Academiei Republicii Socialiste România — Bucaresti, 1971.

A teoria das categorias abelianas tem-se desenvolvido nos últimos vinte anos e pelos seus métodos e resultados desempenha um papel de relevo na Matemática abstracta. Tem origem na Algebra, particularmente na teoria dos módulos sobre um anel e tem sido desenvolvida pela necessidade de se obter o quadro natural para muitas noções algébricas. Do mesmo modo, a teoria das categorias abelianas tem aplicações importantes na teoria dos anéis, na geometria algébrica, na geometria analítica, na topologia algébrica, etc.

O presente trabalho é uma monografia que aborda problemas importantes da teoria das categorias abelianas. O primeiro capítulo expõe (sem demonstrações) noções e resultados fundamentais da teoria das categorias.

Ao segundo capítulo descrevem-se as noções fundamentais sobre as categorias prèaditivas, aditivas préabelianas e abelianas, demonstrando os resultados clássicos sobre as categorias abelianas, os produtos e somas fibradas teoremas de isomorfismo, somas directas. No parágrafo oitavo, o mais importante do capítulo, o Autor ocupa-se dos limites indutivos e projectivos nas categorias abelianas, demonstra a equivalência das quatro formas da condição Ab 5 de Grothender e apresenta consequências.

O terceiro capítulo, «Functores aditivos» contem o estudo dos functores aditivos, categorias dos functores aditivos, categorias de módulos, caracterização de categorias de functors aditivos e categorias de módulos o teorema do produto tensorial, a exactidão dos