MATEMÁTICAS SUPERIORES

PONTOS DE EXAME DE FREQUÊNCIA E FINAIS

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Estatística I — Exame Final — 1.º Semestre — 2-4-1973.

5810 - 1) Dada a distribuição de valores:

11 12 14 15 16 16

representando as classificações de um aluno no decurso do ano lectivo, calcule:

- a) A média; b) A mediana; c) A moda; d) A variância.
 - 2) Uma variável aleatória tem a densidade:

$$f(x \mid \theta) = 0 \text{ se } x < 0$$

$$= \frac{x}{\theta^2} e^{-x^3/2\theta^3} \text{ se } x \geqslant 0.$$

Encontre a distância entre os quartis (1.º e 3.º) e mostre que a razão entre esta distância e o desvio padrão é independente de 0. Notando que o cálculo do desvio padrão pode ser reduzido a propriedades da normal, avalie essa razão.

 Uma amostra de n observações (x₁, ···, x_n) tem a densidade

$$\prod_{i=1}^{n} \left(\frac{1}{\sqrt{2\pi}} \right) e^{-\frac{1}{2}(x_i - \beta x_i - 1)} \quad \text{(tomando } x_0 = 0 \text{)}.$$

Formule um teste da hipótese $\beta = 1$. Pode aplicar o método usual (n grande) para determinar a região de rejeição?

 Deduza a função característica de uma variável aleatória de densidade

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Estatística I — Exame Final — Epoca de Recurso — 20-6-1973.

T

5811 — Mostre que para qualquer variável casual X, com distribuição F(x), sob a condição de E(X) ser finito, se verifica $\lim x[1-F(x)]=0$.

11

Uma moeda com probabilidade p de sair escudo é atirada n+2 vezes (ordens $0,1,2,\cdots,n,n+1$). Na prova de ordem i, define-se uma variável indicatriz I_i que toma o valor 0 se não sair escudo e 1 se sair. Define-se agora a variável X_i $(j=1,\cdots n)$ da forma seguinte: $X_i=I_i+I_{j-1}I_{j+1}-I_i(I_{j-1}+I_{j+1})$ (i. e. $X_i=1$ se $I_{j-1}=I_{j+1}=1-I_i$ ou seja se o resultado na prova i é distinto do anterior e do posterior — verifique isso por uma tabela).

Calcule o valor médio e a variância de $\sum_{j=1}^{n} X_{j}$, supondo os I_{j} independentes.

III

Um par aleatório (X, Y) tem a densidade $f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} |x^2+y^2-2\rho xy|\right]$. Supondo uma amostra de n pares $(x_1, y_1), \dots$ $\dots, (x_n, y_n)$, formule um teste de $\rho = 0$ (independent)

IV

dência), ao nivel de significância de 5%.

Supondo que as variáveis casuais X e Y possuem a densidade de probabilidade conjunta

$$f(x,y) = x + y$$
 $0 < x < 1, 0 < y < 1$
= 0 senão,

calcule o coeficiente de correlação entre X e Y.

Enunciados dos n.º 5810 a 5811 de J. Tiago de Oliveira e J. Marques Henriques

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Estatística II — Exame Final — 1.º Epoca — 30-7-1973.

I

5812 — Se for r o coeficiente de correlação dos n pares de observações (x_i, y_i) $(i = 1, \dots, n)$, calcule o coeficiente de correlação dos n pares

$$(\alpha x_i + \beta, \gamma y_i + \delta)$$
,

com α, β, γ, δ, números reais.

H

Recorrendo exclusivamente às definições mostre que $E(F_{n,m})$, onde $F_{n,m}$ é uma variável com a distribuição F com, respectivamente, n e m graus de liberdade, é independente de n.

111

Considere uma amostra de dimensão n de um universo com densidade $f(x;\theta) = \frac{1}{2} e^{-|x-\theta|}, -\infty < < x < +\infty, -\infty < \theta < +\infty;$ determine o estimador de máxima verosimilhança de θ .

IV

Na demonstração do teorema de NEYMAN-PEARSON uma das hipóteses assumidas foi a de que todos os espaços de probabilidade eram completos. Mostre que esta condição não é essencial, pois que, dado um espaço de probabilidade o seu completivo é sempre completo.

v

Suponha que é conhecido o vector P das probabilidades dos N acontecimentos elementares de um espaço finito e discreto, isto é,

e que qualquer acontecimento deste espaço é representado por um vector lógico, por exemplo U, de dimensão N, com componentes 1, correspondentes aos acontecimentos elementares contidos no acontecimento, e 0, se não for o caso. A probabilidade do acontecimento U, P(U), será então dada por +/U/P.

Dada uma matriz booleana X, de 2 linhas e N colunas, em que cada linha representa dois aconteci-

mentos quaisquer U e V, neste espaço, escreva uma função APL que permita calcular a probabilidade da união $U \cup V$.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Programação Matemática — Exame Final — 1.º Chamada — 14-7-1973.

T

5813 - a) Designe por H_2 o (espaço de Hilbert) conjunto de todas as sucessões de números reais $x = (x_1, x_2, \dots, x_n, \dots)$ tais que

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty.$$

Com x, y e H2 e a e R define-se

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots)$$

 $\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n, \dots).$

É H_2 um espaço convexo? Indique, pelo menos, um subconjunto convexo de H_2 . Justifique.

b) Defina a soma de dois conjuntos $K, L \subset \mathbb{R}^n$ por

$$K+L=|z|z=x+y$$
, $x\in K$, $y\in L$

e o produto de K por a e R por

$$\alpha K = |z|z = \alpha x, x \in K!$$

Se $L \subset K$ com $\alpha = -1$ define-se a diferença $K - L = K + \alpha L$.

Mostre que com K e L convexos e $L \subset K$ é convexa a diferença K - L.

II

Suponha um programa linear dado sob a forma:

(L)
$$Q(x) = p^{T} x = \min_{x \to 0} Ax \geqslant b, x \geqslant 0$$

onde $x, p \in \mathbb{R}^q$, $b \in \mathbb{R}^m$ e A é uma matriz (real) de m linhas e q colunas, de característica qualquer.

Determine o dual de (L) e mostre que os dois programas são equivalentes. III

- a) Converta para vírgula flutuante (computador hexadecimal de palavras de 32 bits) o valor real 16.25;
- b) Estando armazenada na memória de um computador, por colunas, uma matriz A, triangular superior de ordem N, e um vector X de N componentes, escreva um subprograma em FORTRAN que efectue o cálculo de $B=A\cdot X$ e transmita as componentes de B ao programa principal.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Programação Matemática — Exame Final — 2.º chamada — 28-7-1973.

I

5814 - a) Mostre que o conjunto das soluções admissíveis do programa convexo:

$$F(x) = \min_{j \in A} f_{j}(x) \leq 0 \quad (j = 1, \dots, m)$$

$$x \geq 0$$

onde F, f_1, \cdots, f_m são funções convexas, é um conjunto convexo.

b) Dê um contra-exemplo mostrando que se sobre um conjunto convexo que não seja aberto está definida uma função convexa, ela não é obrigatoriamente contínua.

11

Prove que condição necessária e suficiente para que uma função f definida num subconjunto convexo K do espaço R^n seja convexa é que o conjunto $|(x,\Phi)| x \in K$, $\Phi \in R$, $f(x) \leqslant \Phi |$ seja convexo em R^{n+1} .

III

Considere o problema dos transportes para o exemplo seguinte: uma empresa produtora e distribuidora de um determinado produto possui 8 fábricas com as capacidades c_i $(j=1,\cdots,8)$; estas devem abastecer 200 clientes mensalmente com as quantidades q_k $(k=1,\cdots,200)$. A capacidade total de produção é ajustada periodicamente de tal modo que seja

sempre
$$\sum_{i=1}^{8} c_i = \sum_{k=1}^{200} q_k$$
. O custo de transporte da

fábrica j para o local $k \in a_{jk}$. Pretende determinar-se quais as quantidades x_{jk} a enviar da fábrica j para o cliente k, de tal modo que sejam mínimos os custos

totais dos transportes, i. e. $Q = \sum_{i} \sum_{k} c_{ik} x_{ik} \stackrel{!}{=} \min$.

- a) Estabeleça a matriz A deste problema dos transportes;
- b) Determine se o programa linear resultante é sempre solúvel;
- c) Escreva um troço de programa FORTRAN que gere A de tal modo que conhecida a localização de um elemento seja possível determinar o seu valor evitando trabalhar com a matriz A, ou qualquer das suas submatrizes, em memória.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Informática Superior — 1.º Teste — 18-12-1973.

1

5815 — a) Mostre que se L e K são vectores lógicos com (ρ L) = ρ K ou matrizes lógicas conformáveis com (ρ L) [2] = (ρ K) [1], então são válidas as identidades duais

П

- a) Supondo que a função (diádica) [não é uma função nativa num determinado interpretador, defina uma função diádica, MIN, que a simule.
- b) Use MIN na definição de uma nova função MINIMO que simule [/ (redução por MIN) para argumentos tanto vectoriais como matriciais.

III

Dado um alfabeto A, mostre que a estrutura que se obtém definindo sobre A* (conjunto das produções finitas de A) a catenação de dois quaisquer dos seus elementos («strings») é um semi-grupo (semi-grupo livre gerado por A), com identidade.

Universidade de Luanda — Curso Superior de Economia — Estatística — 1.º Teste — 19-12-1973.

1

5816 — a) Mostre que, para qualquer sucessão de valores não agrupados x_1, \dots, x_n , designando por \overline{x} , $G \in H$, resp., as médias aritmética, geométrica e harmónica, se tem sempre $\overline{x} \geqslant G \geqslant H$, verificando-se a igualdade se e só se $x_1 = x_2 = \dots = x_n$. (Sujestão: indução finita relativamente a n).

b) Considere uma distribuição de frequências (dados agrupados) com marcas de classe $x_i = 0, 1, \dots, n$ e frequências $f_i = \binom{n}{i}$. Calcule:

- 1) O intervalo de variação;
- 2) A média aritmética;
- 3) A mediana;
- 4) A moda;
- 5) O terceiro momento centrado, m3;
- 6) A variância.

Se quizesse caracterizar sumariamente esta distribuição por uma medida de localização e outra de dispersão, indique quais as que lhe parecem mais adequadas; justifique.

11

O capital acumulado ao fim de n anos, c_n , a partir de uma unidade de capital colocada à taxa de $r^{\bullet}/_{\bullet}$ an ano é dada pela fórmula $c_n = (1+r/100)^n$; escreva um programa completo (com excepção das instruções de saída) que efectue o cálculo de uma tabela de valores de c para $n=1,2,\cdots,100$ e $r=3,5,4,4,5,5,\cdots,8$. Neste programa é importante, além da lógica, a rapidez da execução dos cálculos. (Sujestão: $c_n=c_1\cdot c_{n-1}$).

Ш

- a) Seja Ω o conjunto dos alunos matriculados em Estatística, M o subconjunto de Ω dos alunos do sexo masculino, A o dos de olhos azuis e G os que têm mais de 1,75 m de altura.
 - Indique um conjunto de P(Ω) que não seja nenhum dos acima especificados;

- 2) Mostre que se $G \subset M$ então $G \cap (G \wedge M) = \emptyset$ • $G + (M \wedge G) = M$;
- 3) Indique qual o conjunto A A M A G.

IV

A empresa ABC produziu as seguintes quantidades em milhares de unidades) nos anos indicados:

1963	62,0
1964	69,8
1965	84,3
1966	90,4
1967	81,0
1968	98,0
1969	122,4
1970	130,8
1971	146,8
1972	170,6

Indique uma medida estatística adequada para exprimir a evolução ao longo deste período; justifique a escolha que fez dessa medida estatística.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Informática Superior — 2.º Teste — 18 de Fevereiro de 1974.

1

5817 — Escreva uma função diádica que simule o operador do «produto interno» da catenação e da estruturação (,·ρ). Nota: com esta função poder-se-ão gerar, entre outras, estruturas com elementos repetidos como (ι3),·ρι3 ↔ 122333.

H

Desenvolva um algoritmo que, incorporado numa parse, permita determinar se, dada uma instrução aritmética escrita numa linguagem automática — por exemplo em FORTRAN — os nomes simbólicos que ocorrem nessa instrução são identificadores da linguagem (no caso do FORTRAN se se tratam de nomes alfanuméricos sem caracteres em branco com um a seis caracteres, o primeiro dos quais alfabético).

III

Classifique as linguagens de programação do ponto de vista da sua tradução/execução e indique algumas em cada um desses grupos, com uma breve indicação de alguns aspectos que considere importantes e que as distingam umas das outras.

Universidade de Luanda — Licenciatura em Ciencias Matemáticas — 5 º Ano — Informática Superior — Exame Final — 28 de Fevereiro de 1974.

I

5818 — Desenvolva um algoritmo que, incorporado numa parse de um compilador de FORTRAN, permita determinar a validade léxica das instruções de GO TO simples e de GO TO calculado (pressuponha, para facilitar, que estas instruções não estão rotuladas e que não ocupam mais de um cartão de programa).

Este algoritmo deverá englobar um teste à correcção do (s) rótulo (s) de transferência que entram nas instruções, bem como, no caso do GO TO calculado, ao valor da variável de salto.

11

É dada uma matriz de observações X de elementos x_{ki} $(k=1,\cdots,n$ e $i=1,\cdots,m$). Define-se, para os vectores-coluna de X, uma matriz de variâncias e covariâncias de elemento genérico

$$r_{ij} = \frac{\sum_{k} (x_{ki} - \overline{x}_{i}) (x_{kj} - \overline{x}_{j})}{\sqrt{\sum_{k} (x_{ki} - \overline{x}_{i})^{2} \sum_{k} (x_{kj} - \overline{x}_{j})^{2}}} (i, j = 1, \dots, m)$$

onde $x_i = \sum_k x_{ki}/n$ e $x_i = \sum_k x_{ki}/n$. Escreva uma função monádica que admita X como argumento, teste que X é de facto uma matriz, e forneça como resultado a matriz dos r's.

III

Define-se a sucessão de FIBONNACCI | Fn!,

011235813...,

em que cada termo é a soma dos dois imediatamente anteriores, $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$, $F_0 = 0$, $F_1 = 1$.

- a) Escreva uma função APL tal que, dado N, permita calcular recursivamente os N primeiros termos desta sucessão.
- b) Exponha as vantagens e possíveis inconvenientes da escrita de programas do tipo recursivo.

IV

Diga o que são gramáticas de estrutura de frase e qual a diferença entre as de contexto sensitivo e as de contexto livre.

Enunciados dos n.º 5812 a 5818 de J. Marques Henriques

J. Bass

M. Bo

A. Ho

MARCE H. LA

> 22. . 23. 1

23. 24. 25.

26. 27. 28.

29. 30.

31.

32.

1