MATEMÁTICAS SUPERIORES

PONTOS DE EXAME DE FREQUÊNCIA E FINAIS

Universidade de Luanda — Licenciatura em Ciencias Matemáticas — 5.º Ano — Informática Superior — Exame Final — Época de Recurso — 1 de Julho de 1974.

T

5819 — Mostre que se F é uma função diádica (computável) associativa e comutativa, então satisfaz às identidades

quaisquer que sejam os argumentos A e B, dos domínios de F.

11

- a) Desenvolva um conjunto de funções tais que, dados para argumento à direita os coeficientes de um polinómio (por ordem crescente das suas potências o grau do polinómio será igual ao número dos coeficientes subtraído de uma unidade), permitam:
 - Via função diádica calcular o valor do polinómio num ponto dado como argumento à esquerda;
 - via função monádica calcular os coeficientes da derivada;
 - via função monádica calcular os coeficientes da primitiva desse polinómio.
- b) Aproveite as duas primeiras funções desenvolvidas acima para escrever uma outra função diádica tal que, dados os coeficientes do polinómio para argumento à direita e um valor real de partida como argumento à esquerda, calcule uma raiz real desse polinómio pelo método de Newton-Raphson (use $x_{n+1} = x_n p(x_n)/p^t(x_n)$, onde x_0 será portanto o argumento à esquerda da função; o programa deverá parar quando se tiver alcançado uma determinada tolerância, por exemplo, $|x_{n+1} x_n| < 10\text{E}-5$).

III

Desenvolva um algoritmo que, incorporado numa parse de um compilador de FORTRAN, permita a tradução de uma instrução de IF aritmético. Para simplificar poderá admitir que a sintaxe da instrução é de um dos tipos:

$$\rightarrow$$
 4 6 2 IF (A-B*2)
 \rightarrow IF (A-B*2), 4,6,2

onde, por definição do IF aritmético, a transferência será feita para as instruções referenciadas respectivamente pelo primeiro, segundo ou terceiro rótulos, consoante o valor da expressão aritmética entre parêntesis venha negativo, nulo ou positivo (neste caso, admitida a simplificação acima, tratar-se-á, mais rigorosamente do ponto de vista sintático, de um dialecto do FORTRAN).

1V

Enuncie a hierarquia que existe entre os vários tipos de linguagens e gramáticas de estrutura de frase. Exemplifique para mostrar que as inclusões são próprias.

Universidade de Luanda — Licenciatura em Ciencias Matemáticas — 5.º Ano — Estatística I — Exame Final de 1972/73 — Epoca de Recurso — 11 de Março de 1974.

I

- 5820 a) Calcule a média e a variância dos n primeiros números naturais; relacione este resultado com uma distribuição teórica importante.
- b) Qual o significado, para uma distribuição de frequências, de se anular a variância? O que se pode deduzir, neste caso, relativamente aos coeficientes de assimetria e de achatamento?
- c) Mostre que, para qualquer distribuição, o 1.º momento absoluto é mínimo quando centrado na mediana e o 2.º momento é mínimo quando centrado na média.

II

Considere uma amostra de dimensão n > 2 (n inteiro), colhida de um universo com distribuição bino-

mial em que a probabilidade de sucesso é p (0).

- a) A (s) moda (s);
- b) Os coeficientes de assimetria e de achatamento;
- c) Indique a condição necessária e suficiente de simetria desta distribuição;
- d) Considerando os coeficientes de assimetria e de achatamento como função de n, qual o seu limite quando n→∞? Relacione este facto com a convergência da lei binomial reduzida para a normal (teorema do limite central).

III

Designe por

$$X = ((x_{ki})) \ (k = 1, \dots, n; \ i = 1, \dots, m)$$

uma matriz de n linhas e m colunas representando as n observações de m variáveis. Define-se, para os vectores-coluna de X, uma matriz de variâncias e covariâncias de elemento genérico

$$r_{ij} = \frac{\sum_{k} (x_{ki} - \overline{x}_i) (x_{kj} - \overline{x}_j)}{\sqrt{\sum_{k} (x_{ki} - \overline{x}_i)^2 \sum_{k} (x_{kj} - \overline{x}_j)^2}}$$

$$= \frac{\sum_{k} (x_{ki} - \overline{x}_i) (x_{kj} - \overline{x}_j)}{n}$$

$$= \frac{n}{\sqrt{S_i^2 - S_i^2}}$$

$$(i, j = 1, \dots, m)$$
, onde $\overline{x_i} = \sum_k x_{ki}/n$, $\overline{x_j} = \sum_k x_{kj}/n$, $S_i^2 = \sum_k (x_{ki} - \overline{x_i})^2/n$ e $S_j^2 = \sum_k (x_{kj} - \overline{x_j})^2/n$.

Mostre que a matriz $R = ((r_{ij}))$ é:

- a) Simétrica;
- b) definida não-negativa.

Universidade de Luanda — Licenciatura em Ciencias Matemáticas — 5.º Ano — Estatística I — Epoca de Recurso — 8 de Julho de 1974.

1

5821 — Calcule a moda, a mediana, a média e a variância da distribuição de densidade

$$f_i = \frac{6}{\pi^2 i^2}, \quad i = 1, 2, 3, \dots$$

[Nota: $\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$]. Discuta os resultados.

11

Dado um universo qualquer, descrito por uma v. a X com $E(X) = \mu$ e $V(X) = \sigma^2$, mostre que:

a) Definindo \overline{x}_n como sendo a média de uma amostra casual de observações independentes, de dimensão $n \ x_1, x_2, \dots, x_n$, vem

$$E(\overline{x_n}) = \mu \quad e \quad E((\overline{x_n} - \mu)^2) = \frac{\sigma^2}{n};$$

b) Designando, como habitualmente, por μ_4 o quarto momento centrado do universo descrito por X, sob a hipótese de μ_4 existir e ser finito, vem

$$E\left[\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)\left(x_{k}-\mu\right)\left(x_{l}-\mu\right)\right]=$$

$$=\begin{cases} \mu_{4} & \text{se as observações } x_{i},x_{j},x_{k},x_{l} \text{ forem coincidentes} \end{cases}$$

$$=\begin{cases} \sigma^{4} & \text{se exactamente dois pares de observações coincidirem} \\ 0 & \text{em quaisquer outras circunstâncias.} \end{cases}$$

III

Considere um universo com média μ , variância σ^2 e quarto momento centrado μ_1 , sendo todas estas medidas desconhecidas mas finitas. Mostre que definindo, como habitualmente,

$$\bar{x}_n = \sum x_i/n, \ m_n^2 = \frac{1}{n} \sum (x_i - \bar{x}_n)^2$$

se tem

$$\lim_{n\to\infty}P\left(m_n^2=\sigma^2\right)=1$$

onde n é a dimensão da amostra.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Estatística II — Exame Final de 1972/73 — Epoca de Recurso — 28 de Fevereiro de 1974.

I

5822 — Considere amostras de dimensão n, X_1, X_2, \dots, X_n , colhidas de um universo normal de

média $\mu=0$ e variância σ^2 (desconhecida). Determine os estimadores de máxima verosimilhança da variância e do desvio padrão do universo; são estes estimadores centrados? Justifique.

II

Dada uma população normal com parâmetros (desconhecidos) (μ, σ^2) , determine um par de estatísticas suficientes para os estimar.

III

No caso da regressão linear múltipla

$$y = b_0 + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k + e$$

pretende-se testar a hipótese simples de que para um certo i $(1 \le i \le k)$, fixo, é $b_i = 0$, contra a hipótese alternativa de que $b_i \ne 0$. Deduza uma estatística adequada para efectuar esse teste, nos dois casos de E $(e e^T) = \sigma^2 I_n$ (n é o número de observações), com σ^2 conhecido e σ^2 desconhecido, respectivamente.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Estatística II — Exame Final — 31 de Julho de 1974.

I

5823 — Determine o estimador de máxima verosimilhança de 0 na distribuição (exponencial negativa) de densidade

$$f(x; \theta) = \theta e^{-\theta x} \qquad x > 0$$
$$= 0 \qquad x \le 0,$$

onde $-\infty < \theta < +\infty$.

11

Numa escola primária foram seleccionados 20 alunos completamente ao acaso e divididos em dois grupos de 10 cada. A um dos grupos foi dado todos os dias um copo de sumo de frutos e ao outro um copo de leite. Ao fim de um certo período o aumento de peso dos alunos é de (kilos):

1.º grupo: 4 2,5 3,5 4 1,5 1 3,5 3 2,5 3,5 2.º grupo: 1,5 3,5 2,5 3 2,5 2 2 2,5 1,5 3 Sabendo que $\int_{-\infty}^{3,10} f_{f_{(18)}}(x) dx = 0,975$ efectue um teste da significância do aumento de peso dos alunos

que beberam sumo relativamente aos que beberam

leite.

III

a) Designando por $F_{(n,m)\epsilon}$ o valor da distribuição $F_{(n,m)}$ tal que

$$P\left(F_{(n,m)}\leqslant F_{(n,m)\,\varepsilon}\right)=\varepsilon\,,$$

e analogamente por $t_{(n)}$ e o valor da distribuição $t_{(n)}$ para o qual

$$P\left(t_{(n)} \leqslant t_{(n)}\varepsilon\right) = \varepsilon\,,$$

mostre que

$$F_{(1,n)1-\epsilon} = t_{(n)1-\frac{\epsilon}{2}}^2;$$

b) Prove que a mediana da distribuição $F_{(n,m)}$ é igual ao inverso da mediana da distribuição $F_{(m,n)}$

17

Cálculos efectuados para uma regressão linear simples de 100 pares de observações (y_i, x_i) forneceram como resultados os seguintes valores da recta $y = \alpha + \beta x$: $\overline{x} = 0$; $\sum x_i^2/n = 9,7$; $\widehat{\alpha} = 1,1$; $\widehat{\beta} = 0,02$; $\widehat{\sigma}^2 = 0.0036$.

Sabendo que $\int_{-\infty}^{1,65} \varphi \left(\frac{\pi}{\omega}\right) dx = 0,9505$, calcule intervalos de confiança aproximados ao nível de 90°/.

V

 $D_{\rm ada}$ a sucessão finita de variáveis aleatórias X_1, \cdots, X_n normais e independentes, com distribuições $X_i \stackrel{d}{=} N(\mu_i, 1)$, define-se a variável aleatória

$$\chi_{\delta,(n)}^{2} = \sum_{i=1}^{n} X_{i}^{2}$$

como possuindo a distribuição do \mathcal{X}^2 descentrado com n graus de liberdade e parâmetro de descentragem $\delta = \sqrt{2 \, \mu_i^2}$. (A variável aleatória $\mathcal{X}^2_{(n)}$ é, pois, um caso particular notável e portanto coincidente com $\mathcal{X}^2_{0,(n)}$).

- a) Calcule $E\left(\chi_{\tilde{\chi}_{1},(n)}^{2}\right)$ e $V\left(\chi_{\tilde{\chi}_{1},(n)}^{2}\right)$;
- b) Mostre que $\chi_{(n)}^2/n \xrightarrow{P} 1$.

Universidade de Luanda — Licenciatura em Ciencias Matemáticas — 5.º Ano — Estatística II — Exame Final — Epoca de Recurso — 8-41-4974.

I

5824 — Mostre que se uma variável aleatória X possui a distribuição do $\chi^2_{(n)}$, então $\sqrt{2X} - \sqrt{2n-1}$ converge para a normal reduzida.

II

Considere um universo descrito por uma variável aleatória X, com distribuição unitorme no intervalo $[0,\theta]$, onde $\theta > 0$ é um parâmetro desconhecido, isto é X possui a densidade

$$f(x \mid \theta) = \frac{1}{\theta} \text{ se } 0 \leqslant x \leqslant \theta;$$
$$= 0 \text{ senão.}$$

Deste universo colheu-se uma amostra de n observações independentes x_1, \dots, x_n .

- a) Construa a função de verosimilhança e deduza o estimador de máxima verosimilhança de θ obtido com base nesta amostra, $\widetilde{\theta}_n$;
- b) Com base no resultado de a), deduza a dístribuição de $\widetilde{\theta}_n$;
- c) Calcule $E(\widetilde{\theta}_n)$ e $V(\widetilde{\theta}_n)$, verificando se este estimador é ou não centrado e coerente.

III

De um universo que se sabe seguir a lei normal $N(\mu, \sigma^2)$ com μ desconhecido e σ^2 conhecido, colhe-se uma amostra de dimensão n.

- a) Construa um intervalo de confiança de $100 \alpha^{\circ}/_{\circ}$ para $\mu (0 < \alpha < 1)$;
- b) Designando por L(n, α) a amplitude do intervalo obtido, verifique que é independente do parâmetro desconhecido μ;
- c) Calcule $\lim_{n\to\infty} L(n,\alpha)$ e interprete este resultado tendo em vista a definição de intervalo de confiança e a distribuição do universo.

IV

Considere que das hipóteses relativas à distribuição dos erros do modelo de regressão linear múltipla é relaxada a relativa à normalidade. Indique quais as implicações que essa diminuição trás, em particular no que respeita aos estimadores de mínimos quadrados dos parâmetros do modelo, valores esperados, variâncias e covariâncias desses estimadores.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Programação Matemática — Exame Final — 11 de Julho de 1974.

I

5825 — Mostre que se uma função f está definida para os pontos de um conjunto convexo $K \subset \mathbb{R}^n$, então uma condição necessária para que f seja convexa é que para qualquer $\lambda \in \mathbb{R}^1$ o conjunto

$$A = \{x \in K : f(x) \leq \lambda\}$$

seja convexo.

É esta condição também suficiente? Demonstre ou dê um contra-exemplo.

II

Considere o seguinte programa linear

$$Q(x) = 10 x_1 + 8 x_2 + 15 x_3 + 7 x_4 + 9 x_5 \stackrel{!}{=} \max$$

$$9 x_1 + 5 x_2 + 11 x_3 + 4 x_4 + 6 x_5 \leqslant 16$$

$$x_1, x_2, x_3, x_4, x_5 \geqslant 0$$

$$x_1, x_2, x_3, x_4, x_5 \leqslant 1.$$

- a) Escreva-o na forma canónica;
- b) Calcule a sua solução optimal no caso de as duas últimas restricções serem substituídas por $x_i=0$ ou $x_i=1$ $(i=1,2,\cdots,5)$ (programação booleana). Indique, nesse caso, qual o conjunto das soluções admissíveis e uma sua possível representação.

III

Para $x, p \in R^n$ e $y, b \in R^m$ (n > m), definiu-se o dual de

$$\min Q(x) = p^T x, Ax = b, x \geqslant 0$$

por

$$\max G(y) = y^T b, A^T y \leqslant p,$$

onde desapareceram as restricções ao sinal das componentes de y; estas restricções que definem os conjuntos de soluções admissíveis dos dois programas não podem ser, para além disso, substancialmente relaxadas.

Demonstre que: ou Ax = b possui uma solução $x \in R^n$ ou $A^Ty = 0$, $b^Ty = 1$ possui uma solução $y \in R^m$, mas não ambos simultâneamente.

Universidade de Luanda — Licenciatura em Ciências Matemáticas — 5.º Ano — Programação Matemática — Exame Final — Epoca de Recurso — 8-11-1974.

I

5826 – a) Mostre que se K for um conjunto convexo, então qualquer combinação convexa de um número arbitrário de pontos de K é ainda um ponto de K. É a mesma afirmação válida para uma combinação linear? Demonstre ou dê um contra-exemplo.

b) Sobre um conjunto convexo K está definida uma sucessão de funções convexas f_1, f_2, \cdots , que convergem em todos os pontos de K para uma função f; é f também uma função convexa? Justifique. Qual o resultado a que se chega se a sucessão $|f_n|$ fôr de funções estritamente convexas?

II

a) Se $a^1, \dots, a^n \in R^m$ (n > m), define-se o cone gerado por estes vectores como o conjunto de todos os pontos que são combinação linear deles com coeficientes não negativos:

$$\begin{split} &C\left(a^{1}\,,\cdots,a^{n}\right) = \\ &= \left\{\,x \,|\, x \,e\,R^{m}\,,\ x = \sum_{i=1}^{n}\,\lambda_{i}\,a^{i}\,,\ \lambda_{i} > 0\,\right\}. \end{split}$$

Mostre que C é um conjunto convexo.

b) Mostre que dos programas lineares com restricções

$$Ax = b, x > 0$$

$$A^T y \geqslant 0$$
, $b^T y < 0$

com $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ e n > m, um e um só possui soluções admissíveis.

III

Resolva o programa linear seguinte:

$$Q(x) = 250 x_1 + 45 x_2 \stackrel{!}{=} Max$$

$$150 x_1 + 25 x_2 \le 10000$$

$$x_1 + 0.2 x_2 \leqslant 72$$

$$x_1 \leqslant 50$$

$$x_2 \leqslant 200$$

$$x_1, x_2 \geqslant 0$$

Universidade de Luanda — LICENCIATURA EM ECONOMIA — 4º Ano — Econometria — Teste de Frequência — 15-6-1974.

1

5827 — Considere o seguinte modelo simplificado relativo a uma macro-economia:

$$\begin{split} C_i &= \alpha_1 + \alpha_2 \; Y_i + \alpha_3 \; C_{i-1} + \alpha_4 \; i + u_i \\ I_i &= \beta_1 + \beta_2 \left(C_i - C_{i-1} \right) - \beta_3 \; r_{i-1} + v_i \\ Y_i &= C_i + I_i + G_i \end{split}$$

onde:

 $C_i =$ consumo nacional no ano i;

I, = investimento líquido do ano i;

 $Y_i = \text{rendimento nacional no ano } i;$

Gi = despesas públicas em bens e serviços no ano i;

 $r_{i-1} =$ taxa de juro no ano i-1;

i = 2,3,...,n os sucessivos anos para os quais se dispõem de dados estatísticos;

u, e v, são termos estocásticos e

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2$ e β_3 são os parâmetros desconhecidos.

 a) Indique quais as variáveis endógenas e quais as predeterminadas no modelo acima;

- b) Exprima as equações deste modelo sob a forma de um sistema de equações lineares em que o vector das incógnitas traduz as variáveis endógenas; qual a condição para que este sistema seja solúvel e possua uma solução única?
- c) Se se pretender estimar os parâmetros β₁, β₂ e β₃ da 2.* equação, que método se deverá utilizar? Enuncie a condição que deve assumir relativamente à distribuição dos termos estocásticos para que os estimadores sejam centrados.

II

No quadro seguinte encontram-se indicados e calculados vários valores que relacionam os custos de produção (x) e os volumes de vendas (y) de uma certa empresa; admite-se que o volume de vendas é uma função linear dos montantes gastos com a produção $(y = \alpha + \beta x)$:

	x_i	yı	$x_i = \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$	y_i^2	\hat{y}_i	ei	e,2
	3	2	-4	-7	28	16	9	2,40		0,16
	5	6	-2	- 3	6	4	25	5,70		0,09
	7	9	0	0	0	0	49	9,00		0,00
	9	13	2	4	8	4	81	12,30		0,49
	11	15	4	6	24	16	121	15,60		0,36
Z	35	45	0	0	66	40				1,10

Calcule:

- a) Os estimadores α e β obtidos pelo método dos menores quadrados;
 - b) Ze;;
- c) Os estimadores da variância dos erros, pelos métodos dos menores quadrados e da máxima verosimilhança;
 - d) A covariância entre α e β;
- e) Sabendo que $\Sigma (y_i \overline{y})^2 = 110$, o coeficiente de correlação r;
- f) Sabendo que $\int_{-\infty}^{3,18} f_{l_3}(x) dx = 0,975$, construa intervalos de confiança de 95%, para α e β ;
- g) Com base nos valores que calculou na alínea f), se a empresa antevê que o seu orçamento das despesas de produção se elevará a 14 durante o ano subsequente, determine quais os limites que se poderão prever para o volume de vendas.

III

Num trabalho recente sobre a estrutura da produção agrícola angolana (Alves da Rocha, M. J. e Pereira de Sousa, A., Um caso de aplicação da função de produção de Cobb-Douglas na análise da agricultura tradicional, Simpósio de Planeamento Regional, 4-8 de Março de 1974), fizeram-se ajustamentos do tipo:

$$y = \alpha \cdot x_1^{\beta_1} \cdot x_2^{\beta_2} \cdot x_3^{\beta_3}$$

às produções da mandioca e do milho em Angola, onde y representa o rendimento, x_1 a área das culturas, x_2 o número de trabalhadores e x_3 o capital empregue nas explorações, em unidades adequadas.

Os autores obtiveram para os produtos em estudo os seguintes ajustamentos:

Mandioca:

$$y = 5,68756 \cdot x_1^{1,43721} \cdot x_2^{-0,475647} \cdot x_3^{-0,110413}$$

Milho:

$$y = 0.181138 \cdot x_1^{0.665497} \cdot x_2^{0.202881} \cdot x_3^{0.297387}$$

- a) Deduza as equações normais para as regressões do tipo (*); de acordo com o método dos menores quadrados utilizado, qual o número mínimo de observações que permitem estimar os parâmetros do modelo? Justifique a resposta. (Nota: os Autores citados usaram, respectivamente, 18 observações para a mandioca e 26 para o milho.)
- b) Qual o significado dos expoentes negativos no caso do ajustamento da mandioca? Dê uma interpretação tão directa quanto possível, podendo utilizar argumentos de natureza económica.

Universidade de Luanda — LICENCIATURA EM ECON MIA — 4.º Ano — Econometria — Exame Final — 1.º Chamada — 27 de Julho de 1974.

5828—Considere o seguinte modelo que equaciona, de acordo com a teoria keynesiana, as relações entre o rendimento e o consumo de agregados económicos:

$$C_i = \alpha + \beta Y_i + u_i$$

$$Y_i = C_i + I_i$$

$$i = 1, 2, \dots, n.$$

Suponha que as variáveis endógenas são $C \in Y$, que I é uma variável exógena e u_i é um termo estocástico tal que $E(u_i) = 0$, $E(u_i u_j) = 0$, $E(u_i^2) = -\sigma^2 > 0$, $E(u_i I_j) = 0$ e $V(I_i) = \sigma_I^2 > 0$ para todos os $i, j = 1, 2, \dots, n$.

- a) Existem variáveis com retardo neste modelo? E predeterminadas? Justifique.
- b) Determine estimadores dos parâmetros cujas equações exprimem as variáveis endógenas como funções lineares da variável exógena. São estes estimadores centrados?
- c) O facto de u_i e I_j não estarem correlacionados implica o mesmo relativamente a u_i e Y_i ? Dê uma

justificação matemática (analítica) e, se desejar também uma de ordem económica (descritiva).

d) Mostre que, designando por $\hat{\beta}_n$ um dos estimadores de β calculado com base numa amostra qualquer de dimensão n virá, em geral, sob a condição de que $\beta < 1$ (modelo keynesiano), $\lim_{n\to\infty} \hat{\beta}_n > \beta$ ou, mais rigorosamente, $\lim_{n\to\infty} P(\hat{\beta}_n > \beta) = 1$.

II

No quadro seguinte encontram-se indicados valores observados que relacionam os custos de produção (x) e os volumes de vendas (y) de uma certa empresa; admite-se que o volume de vendas é uma função linear dos montantes gastos com a produção $(y=\alpha+\beta x)$:

$$x_i$$
 3 7 5 9 11 y_i 2 9 6 13 15.

Calcule:

- a) Os estimadores $\hat{\alpha}$ e $\hat{\beta}$ obtidos pelo modelo linear geral (forma matricial).
- b) Ainda através do modelo linear geral (forma matricial) determine os estimadores de $V(\alpha)$, $V(\beta)$ e Cov (α, β) .
 - c) Σe_i ; justifique o resultado.

- d) Sabendo que $\Sigma (y_i \overline{y})^2 = 110$, o coeficiente r^2 ; comente o resultado.
- e) Sabendo que $\int_{-\infty}^{5,84} f_{t_3}(x) dx = 0.95$, construa intervalos de confiança de 99 °/_o para α e β .
- f) Com base nos valores que calculou em e), se a empresa antevê que o seu orçamento das despesas de produção se elevará a 12 durante o ano subsequente, determine quais os limites que se poderão prever para o volume de vendas.

III

Uma empresa de estudos de mercado realizou um inquérito sobre o consumo de cerveja entre um grupo de consumidores escolhidos ao acaso, utilizando as características idade, sexo, raça, subdivididos pelos seguintes atributos:

idade: menos de 18 anos — atributo 1
de 18 a 50 anos — atributo 2
mais de 50 anos — atributo 3
sexo: masculino — atributo 4
feminino — atributo 5
raça: branca — atributo 6
preta — atributo 7.

O consumo vem expresso em litros/mês. Os dados obtidos na amostra foram:

Indivíduos com os atributos 1, 4, 6: 3 indivíduos com os consumos 2, 4, 6 litros/mês

×	w	*	n	1, 5, 6:	2	30	10	10	n	1, 2 litros/mês
			D	1, 4, 7:	2		*	b		3, 2 litros/mês
	a		u	1, 5, 7:	3		D		D	4, 1, 1 litros/mês
			w	2, 4, 6:	8		20			8, 4, 12, 7, 5, 4, 10, 4 litros/mês
		b	w	2, 5, 6:	3		w	υ	20	3, 3, 1 litros/mês
		v		2, 4, 7:	5	10,	w	D	20	10, 11, 6, 7, 8 litros/mês
	B	w	x	2, 5, 7:	2		n			3, 5 litros/mês
D				3, 4, 6:	1		n	D	D	2 litros/mês
				3, 5, 6:	2		w			1, 2 litros/mês
				3, 4, 7:	3		10		n	4, 1, 7 litros/mês
				3, 5, 7:	2				n	7, 4 litros/mês.

Construiu-se um modelo de regressão linear multipla para estabelecer uma relação funcional entre o consumo (y) e variáveis representativas destes grupos de atributos $(x_1, x_2, \dots, x_{12})$. A matriz das observações e o vector dos valores da variável dependente são:

(36 observações).

- a) Neste modelo não são considerados termos independentes; justifique a razão.
- b) Sob a hipótese de os erros do modelo possuirem esperança matemática nula, variância constante e serem mutuamente independentes deduza os estima-

dores, pelo método dos menores quadrados dos coeficientes das variáveis independentes x_1, x_2, \cdots, x_{12} , relativas aos conjuntos de atributos considerados.

Universidade de Luanda — LIGENCIATURA EM ECONOMIA — 4.º Ano — Econometria — Exame Final — 2.ª chamada — 31-7-1974.

I

5829 — Admite-se que o volume de vendas y, de uma empresa fabril se pode exprimir linearmente como função dos gastos de produção x, de tal modo que para os últimos 6 meses do ano o valor da função (volume de vendas) sofre o acréscimo de uma constante, isto é,

 $y = \alpha_1 + \gamma x$ durante os primeiros 6 meses do ano $y = \alpha_2 + \gamma x$ durante os últimos 6 meses do ano $(\alpha_1 < \alpha_2)$.

Para estimar α_1, α_2 e γ introduziu-se uma variável ficticia z, de tal modo que

$$y = \beta_1 + \beta_2 x + \beta_3 z,$$

com z = 0 para os pares (x_i, y_i) dos primeiros 6 meses do ano e z = 1 para os restantes.

- a) Exprima os estimadores de α_1 , α_2 e γ em termos dos de β_1 , β_2 e β_3 e enuncie as hipóteses que deve assumir relativamente à distribuição dos erros do modelo para que esses estimadores sejam os de menor variância na classe dos estimadores lineares;
 - b) Para as observações (fictícias):

construa a matriz das obervações, de acordo com a técnica indicada acima, e escreva o sistema das equações normais de β (sem o resolver) sob a forma matricial.

II

Obtida uma amostra de 8 famílias, observaram-se os valores (em milhares de escudos mensais) para os consumos C, e rendimentos Y dessas famílias, que se apresentam na tabela seguinte:

	Y_i	C_{i}	Y_i^2	Y_i C_i	C_i^2	$(Y_i = \overline{Y})^2$	$(C_i - \overline{C})^2$	$(Y_i - \overline{Y})(C_i - \overline{C})$	e_{i}
	1	1	1	1	1	36	16	24	- 0,181
	3	2	9	6	4	16	9	12	-0,453
	4	4	16	16	16	9	1	3	0,911
	6	4	36	24	16	1	1	1	-0,361
	8	5	64	40	25	1	0	0	-0,633
	9	7	81	63	49	4	4	4	0,731
	11	8	121	88	64	16	9	12	0,459
	14	9	196	126	81	49	16	28	- 0,449
Σ	56	40	524	364	256	132	56	84	_

a) Admitindo que existe uma relação linear do tipo $C = \alpha + \beta Y$, entre C = Y, estime os parâmetros desconhecidos do modelo com base na amostra acima, pelo método dos menores quadrados;

b) Sabendo que $\Sigma e_i^2 = 2,541$, calcule os estimadores da variância dos erros, pelo método dos menores quadrados e da máxima verosimilhança, sob a hipótese de distribuição normal dos erros, e com base nisso a variância dos estimadores calculados em a);

 c) Calcule o coeficiente de correlação r, entre os rendimentos e os consumos. Comente o resultado, relativamente à variação dos consumos provocada por variações dos rendimentos;

d) Supondo que os valores da amostra vinham todos multiplicados por 12, isto é, que os consumos e rendimentos se exprimiam em milhares de escudos anuais, qual o valor de r que se obteria? Justifique;

e) No modelo acima obviamente que α representa o consumo autónomo e $\beta = d \ C/d \ Y$ a propensão marginal ao consumo; é claro que $\beta < 1$.

Sabendo que
$$\int_{-\pi}^{1,44} f_{\ell_0}(x) dx = 0.9 \text{ construa um}$$

intervalo de confiança de $80^{\circ}/_{\circ}$ para o consumo autónomo e, com base nele, estime qual a variação no consumo que se pode antever para uma família cujo rendimento mensal é de 16 contos. Dê uma justificação de natureza económica para os intervalos que obteve (para Y=0 e Y=16, respectivamente).

III

Considere os seguintes modelos de regressão que relacionam uma variável independente com uma variável dependente:

- 1. $y = \alpha + \beta x$;
- 2. $y = \alpha \beta^x$;
- 3. $y = \alpha + \beta x + \gamma x^2$;

4.
$$y = \alpha + \beta x + \text{sen } \frac{2\pi x}{12}$$
.

- a) Deduza as equações normais nos casos dos modelos 2. e 4. acima;
- b) Qual o número mínimo de observações que permitiriam estimar o parâmetros nos vários casos considerados? Justifique as respostas;
- c) Qual o significado no modelo 4. do aparecimento do termo não-linear sen $\frac{2\pi x}{12}$? Dê uma interpretação tão directa quanto possível, podendo utilizar argumentos de natureza económica;
- d) Dos modelos acima qual o que lhe parece mais adequado para o ajustamento dos seguintes dados do valor da produção mensal de artigos de vestuário de uma fábrica de confecções:

Mês	Valor
Fevereiro	148
Março	157
Abril	153
Maio	137
Junho	115
Julho	142
Agosto	163
Setembro	170
Outubro	168
Novembro	152
Dezembro	130
Janeiro	157
Fevereiro	178
Março	187
Abril	183
Maio	167
Junho	144
Julho	172
Agosto	193
Setembro	202
Outubro	198
Novembro	182
Dezembro	160
Janeiro	187
Fevereiro	208

Justifique a resposta, dizendo qual o processo analítico que utilizaria, num esquema numérico, para escolher a regressão mais adequada.

Enunciados dos n.ºs 5819 a 5829 de J. Marques Henriques