A remark on groups without center

by José Morgado

Faculdade de Ciências, Universidade do Porto — Portugal

Introduction

Let G be a multiplicative group and let e denote the neutral element of G. If the center Z of G is constituted only by the element e, then G is said to be a group without center.

The purpose of this note is to state the following

THEOREM: If G is a group without center and the commutator subgroup G', of G, is directly indecomposable, then G is directly indecomposable.

We give two proofs of this Theorem.

For the first proof, we need some results on normal endomorphisms.

1 — Preliminary Lemmas

Let us recall that an endomorphism α of G is said to be a normal endomorphism of G, if one has

(1)
$$\alpha(xyx^{-1}) = x\alpha(y)x^{-1}$$
, for all $x, y \in G$.

An endomorphism α of G is called a projector of G, if α is normal and idempotent (i.e., $\alpha^2 = \alpha$).

The group G is directly indecomposable, if and only if the projectors of G are exactly the identity endomorphism ε (defined by $\varepsilon(x) = x$, for every $x \in G$) and the zero endomorphism ω (defined by $\omega(x) = \varepsilon$, for every $x \in G$).

LEMMA 1: Let G' be the commutator subgroup of G. If α is a normal endomorphism of G, then the restriction of α to G' is a projector of G'.

PROOF: Indeed, let γ be the restriction of α to G'.

It is clear that γ is an endomorphism of G', for G' is a fully invariant subgroup of G.

Moreover the endomorphism γ of G' is obviously normal. Thus, in order to prove that γ is a projector of G', it is sufficient to prove that

$$\gamma^2(a) = \gamma(a)$$
, for every $a \in G'$.

Since every $a \in G'$ is a product of commutators of G, it is clearly sufficient to prove that

$$\gamma^2(x^{-1}y^{-1}xy) = \gamma(x^{-1}y^{-1}xy),$$

for all $x, y \in G$.

By (1), one has for all $x, y \in G$,

$$\gamma^{2}(x^{-1} y^{-1} x y) = \alpha^{2}(x^{-1} y^{-1} x y) =
= \alpha(\alpha(x^{-1} y^{-1} x) \alpha(y)) =
= \alpha(x^{-1} \alpha(y^{-1}) x \alpha(y)) =
= \alpha(x^{-1}) \alpha(\alpha(y^{-1}) x \alpha(y)) =
= \alpha(x^{-1}) \alpha(y^{-1}) \alpha(x) \alpha(y) =
= \alpha(x^{-1} y^{-1} x y) =
= \gamma(x^{-1} y^{-1} x y),$$

as wanted.

LEMMA 2: Let α and β be normal endomorphisms of G and let γ and δ be, respectively, the restrictions of α and β to G'. If one has

$$\gamma(a) = \delta(a)$$
, for every $a \in G'$,

then the operator $\alpha - \beta$ is a normal endomorphism of G and the subgroup $\operatorname{Im}(\alpha - \beta)$ is contained in the center Z of G.

PROOF: In fact, from

$$\begin{split} \alpha \left(x^{-1} \, y^{-1} \, x \, y \right) &= \gamma \left(x^{-1} \, y^{-1} \, x \, y \right) = \\ &= \delta \left(x^{-1} \, y^{-1} \, x \, y \right) = \beta \left(x^{-1} \, y^{-1} \, x \, y \right), \end{split}$$

for all $x, y \in G$, it follows, by the normality of α and β ,

$$x^{-1}\,\alpha\left(y^{-1}\right)x\,\alpha\left(y\right)=x^{-1}\,\beta\left(y^{-1}\right)x\,\beta\left(y\right),$$
 for all $x\,,y\in G$.

Hence,

(2)
$$x \alpha(y) \beta(y^{-1}) = \alpha(y) \beta(y^{-1}) x,$$
 for all $x, y \in G$,

that is to say,

$$x(\alpha - \beta)(y) = (\alpha - \beta)(y)x$$
, for all $x, y \in G$,

meaning that the set $Im(\alpha - \beta)$ is contained in the center Z of G.

Now, let us see that the operator $\alpha - \beta$ is an endomorphism of G (and so $\text{Im}(\alpha - \beta)$ is a subgroup of G).

One has clearly, for all $x, y \in G$,

$$(\alpha - \beta)(x y) = \alpha(x y) \beta(x y)^{-1} =$$

= $\alpha(x) \alpha(y) \beta(y^{-1}) \beta(x^{-1})$.

On the other hand,

$$(\alpha-\beta)(x)(\alpha-\beta)(y)=\alpha(x)\beta(x^{-1})\alpha(y)\beta(y^{-1}).$$

Thus, one must prove that

$$\alpha(y)\beta(y^{-1})\beta(x^{-1}) = \beta(x^{-1})\alpha(y)\beta(y^{-1}),$$
 for all $x, y \in G$

and this is obviously true, in view of (2).

Lastly, for all $x, y \in G$, one has, by the normality of α and β ,

$$\begin{split} (\alpha - \beta)(x \, y \, x^{-1}) &= \alpha \, (x \, y \, x^{-1}) \, \beta \, (x \, y \, x^{-1})^{-1} = \\ &= x \, \alpha \, (y) \, x^{-1} \, x \, \beta \, (y^{-1}) \, x^{-1} = \\ &= x \, (\alpha - \beta)(y) \, x^{-1} \, , \end{split}$$

and from here one concludes that the endomorphism $\alpha - \beta$ is normal, which completes the proof of Lemma 2.

2 - First proof of Theorem above

Let us suppose that the commutator subgroup G', of G, is directly indecomposable and let α be a normal endomorphism of G.

Then, by Lemma 1, one has necessarily either

$$\alpha (x^{-1}y^{-1}xy) = x^{-1}y^{-1}xy \;,\;\; \text{for all} \;\; x\,,y \in G$$
 or

$$\alpha(x^{-1}y^{-1}xy) = e$$
, for all $x, y \in G$.

This means that, if α is a normal endomorphism of G, then one has

either
$$\alpha' = \varepsilon'$$
 or $\alpha' = \omega'$,

where α' , ϵ' , ω' denote, respectively, the restrictions of α , ϵ , ω to G'.

By Lemma 2, one has clearly

either
$$\operatorname{Im}(\varepsilon - \alpha) \subseteq \{e\}$$
 or $\operatorname{Im}(\alpha - \omega) \subseteq \{e\}$,

in view of the fact that G is a group without center.

Thus, one has obviously

either
$$\alpha(x) = x$$
 for every $x \in G$
or $\alpha(x) = e$ for every $x \in G$,

meaning that

either
$$\alpha = \varepsilon$$
 or $\alpha = \omega$.

Consequently, G has only the trivial projectors, ε and ω , and so G is directly indecomposable, as it was to be shown.

3 - Another proof

Let us suppose that G is the direct product of the (normal) subgroups A and B, $G = A \times B$.

One must prove that

either
$$A = e$$
 or $B = \{e\}$.

First, we are going to show that, if $G = A \times B$, then one has $G' = A' \times B'$, G', A' and B' being, respectively, the commutator subgroups of G, A and B.

In fact, let $[g,h] = g^{-1}h^{-1}gh$ be a commutator of G.

Since g = ab and h = cd, with $a, c \in A$ and $b, d \in B$ and, moreover, each element of A commutes with each element of B, one has

$$[g,h] = b^{-1} a^{-1} d^{-1} c^{-1} a b c d =$$

$$= a^{-1} b^{-1} d^{-1} c^{-1} a c b d =$$

$$= a^{-1} c^{-1} a c b^{-1} d^{-1} b d =$$

$$= [a,c] [b,d].$$

From this it follows that $G' \subseteq A'B'$ and, since $A'B' \subseteq G'$, one concludes that G' = A'B'.

Now, A' and B' are normal subgroups of G'; in fact, if $g \in G'$ and $[a,c] \in A'$,

with $a, c \in A$, then

$$g[a,c]g^{-1} = [gag^{-1}, gcg^{-1}]eA',$$

because $g \, a \, g^{-1} \in A$ and $g \, c \, g^{-1} \in A$, proving that A' is a normal subgroup of G'. Analogously for B'.

In addition, one has $A' \cap B' \subseteq A \cap B = \{e\}$. Consequently, $G' = A' \times B'$, as desired. Now, since G' is directly indecomposable, one has

either
$$A' = \{e\}$$
 or $B' = \{e\}$,

that is to say,

either A is an Abelian subgroup of G or B is an Abelian subgroup of G.

From this it follows that

either
$$A \subseteq Z$$
 or $B \subseteq Z$

and, since $Z = \{e\}$, one concludes that

either
$$A = \{e\}$$
 or $B = \{e\}$,

as required.

BIBLIOGRAPHY

- [1] José Morgado, A note on the normal endomorphisms of a group, «Gazeta de Matemática», 109-112 (1968), pp. 6-8.
- [2] A. Almeida Costa, Cours d'Algèbre Générale, vol. I, Lisboa, 1964.