

Uma Expansão-Beta?

Uma expansão-beta é o análogo da usual expansão decimal de um número real, mas numa base não inteira. A letra β (beta) do alfabeto grego é usada habitualmente para designar essa base.

As expansões-beta foram introduzidas pela primeira vez pelo matemático húngaro A. Rényi, em 1957, e têm vindo a ser estudadas até hoje, nomeadamente no contexto da área científica dos Sistemas Dinâmicos. Um aspecto de grande importância e interesse nesse estudo é o da relação entre certas propriedades das expansões-beta e a caracterização aritmética da base β .

Na introdução que se segue começaremos por definir expansão numa base β qualquer, e ao longo deste artigo faremos sistematicamente referência à expansão decimal de um número real, para pôr em evidência as semelhanças e diferenças com o caso de uma base não inteira. Na verdade, a construção da expansão decimal e as suas propriedades são semelhantes às da expansão em qualquer base inteira, pelo que consideraremos este caso mais geral. Quando for necessário frisar que nos estamos a restringir ao caso de a base ser inteira, usaremos a letra b para designar essa base.

Convém, antes de mais, fixar alguma notação: como habitualmente, \mathbb{R} designa o conjunto dos números reais, \mathbb{Q} o dos racionais e \mathbb{Z} o dos inteiros. Dado um número real x, o símbolo $\lfloor x \rfloor$ designa a parte inteira de x, ou seja, $\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \le x\}$.

Por exemplo, $\lfloor 3.14 \rfloor = 3$, $\lfloor \sqrt{2-1} \rfloor = 0$ e $\lfloor -3.001 \rfloor = -4$.

Seja então β >1. Vamos concentrar-nos primeiro no caso de um real $0 \le x_0 < 1$; definimos $e_1 = \lfloor \beta x_0 \rfloor$ e $x_1 = \beta x_0 - e_1$.

Temos obviamente: $0 \le e_1 < \beta \in 0 \le x_1 < 1$; além disso $x_0 = e_1 \beta^{-1} + x_1 \beta^{-1}$.

Repetindo a operação,

 $e_2 = [\beta x_1] = x_2 = \beta x_1 - e_2$ e substituindo o valor de x_1 na equação anterior,

$$x = e_1 \beta^{-1} + x_1 \beta^{-1} = e_1 \beta^{-1} + \beta^{-1} (e_2 \beta^{-1} + x_2 \beta^{-1}) = e_1 \beta^{-1} + e_2 \beta^{-2} + x_2 \beta^{-2}$$
.

O leitor notará facilmente que podemos repetir esta operação um qualquer número n de vezes, obtendo a representação $x_0 = e_1 \beta^{-1} + e_2 \beta^{-2} + ... + e_n \beta^{-n} + x_n \beta^{-n}$ ou, numa notação mais precisa e sucinta,

$$x_0 = \sum_{k=1}^{n} e_k \beta^{-k} + x_n \beta^{-n}$$

em que as sucessões e_n e x_n são definidas a partir do termo inicial x_0 pela recorrência $e_n = \lfloor \beta x_{n-1} \rfloor$; $x_n = \beta x_{n-1}$ e satisfazem portanto as desigualdades $0 \le e_n < \beta$ e $0 \le x_n < 1$. Note-se que no caso de β ser não inteiro, a condição nos coeficientes pode ser escrita como $e_n \in \{0,1,...,b_n\}$, enquanto para uma base inteira b a condição é $e_n \in \{0,1,...,b_n\}$.

Outra fórmula que decorre facilmente das anteriores e que permite determinar o coeficiente e_n apenas à custa dos anteriores e de x_0 é a seguinte:

$$e_n = \lfloor \beta^n (x_0 - \sum_{k=1}^{n-1} e_k \beta^{-k}) \rfloor$$

[Uma Expansão-Beta?]

De facto, os coeficientes de um x_0 , relativamente a uma base β , podem ser definidos como a única sucessão $\{e_n\}$ de inteiros, satisfazendo, para todo o $n \ge 1$, as condições:

 $1.0 \le e_n < \beta$

 $2.0 \le x_0 - \sum_{k=1}^n e_k \beta^{-k} < \beta^{-n}$.

Como β >1, fica claro que a sucessão $\sum_{i=1}^n e_i \beta^*$ converge para x_0 , ou seja, x_0 é a soma da série $\sum_{i=1}^n e_i \beta^*$ que designamos por expansão de x_0 na base β .

A definição da expansão generaliza-se facilmente a qualquer x>0: se x>1, existe um inteiro (único) m para o qual se verifica $\beta^{m-1} \le x < \beta^m$; o número real $x\beta^m$, menor do que 1, tem uma expansão na base β , seja ela $\sum_{k=1}^{\infty} e^k \beta^k$; a série $\sum_{k\geq 1} e'_{i}\beta^{-k+m} = \sum_{j\geq m+1} e'_{j+m}\beta^{-j} = \sum_{j\geq m+1} e_{j}\beta^{-j}$ é então a expansão, na mesma base, de x, definindo a sucessão dos coeficientes para x por $e_j = e'_{j+m}$.

Se não existem dúvidas sobre qual a base considerada, a expansão pode ser representada pela sequência dos coeficientes $\{e_i\}_{i=0,1}$ e se queremos dar conta apenas dos primeiros termos, podemos escrevê-los ordenadamente, sem os índices, usando um símbolo convencional para separar os coeficientes de índice negativo dos restantes, e indicando, por meio de reticências, por exemplo, que se está a apresentar apenas um bloco inicial da expansão. Temos assim, por exemplo, a familiar expressão

 $\sqrt{2}$ =1.4142135...=1+4(10)¹+1(10)²+4(10)³+2(10)⁴+1(10)³+... para a expansão na base 10 de $\sqrt{2}$, ou

 $\sqrt{2}$ =1.0110101...=1+2²+2³+2³+2³+2⁵+2⁷+... para a expansão do mesmo número na base 2, sendo que na última expressão se omitiram as potências com coeficiente zero.

O leitor é convidado a realizar alguns cálculos do mesmo tipo ou, melhor ainda, a escrever o seu próprio programa para calcular, até uma ordem qualquer, os coeficientes da expansão de um número dado numa determinada base inteira. A possibilidade de desenvolver esse cálculo está, em geral, dependente do grau de precisão com que conhecemos o número em questão (e, muitas vezes, conhecemos esse número exactamente através de uma parte da sua expansão decimal!), mas, no caso, por exemplo, de números da forma [™]/_q, em que q é racional, o cálculo pode ser feito de modo exacto, com recurso apenas à aritmética dos inteiros. Essa possibilidade estende-se a outros números algébricos (ou seja, raízes de polinómios com coeficientes inteiros) e mesmo ao caso de bases não inteiras mas que sejam números racionais ou algébricos.

Por exemplo, se β for a raiz positiva do polinómio z^2 -z-1, temos $\sqrt{2}$ =1+ β^2 + β^8 + β^{-10} +....

Evidentemente, nada impede que a expansão de um certo x_0 na base β seja finita, isto é, que para algum n se tenha $x_n=0$ e portanto $e_k=0$ para todo o k>n.

Outra situação digna de nota, e a que voltaremos mais adiante, é a de a expansão- β de um determinado número ser (eventualmente) periódica; esclareça-se que uma expansão $\sum_{k>m+1} e_k \beta^k$ se diz eventualmente periódica, ou apenas periódica, se existir um inteiro n e um inteiro positivo p tais que para todo o $k \ge n$ se tenha e_{kv} = e_r . Se p for o menor inteiro positivo satisfazendo aquela condição, dizemos que a expansão tem período p, e representamos a sucessão dos coeficientes usando uma barra para indicar o bloco periódico, que se repete indefinidamente: $e_{nm}...e_{n+1}e_n...\bar{e}_{n+2}$. Se a sucessão se inicia logo com o bloco periódico, diz-se que é puramente periódica.

Expansões e sistemas dinâmicos simbólicos

Antes de continuarmos, vamos fazer uma breve digressão para pôr em evidência a seguinte interpretação da construção da expansão para $x_0 \in [0,1]$: a sucessão $\{x_n\}$ foi definida pela recorrência $x_n = f(x_{n-1})$ onde f designa a função definida por $f:[0,1] \to [0,1]f(x) = \beta x - [\beta x]$, e, portanto, se designarmos por $f^{(0)}$ a composição de f com ela própria, n vezes, deduzimos que $x_n = f^{(n)}(x_n)$. Descrevemos este facto dizendo que a sucessão $\{x_n\}$ constitui a órbita $de x_0$ por iteração $de f^1$.

Este é um exemplo relativamente simples de um sistema dinâmico discreto: temos um conjunto, neste caso o intervalo, cujos elementos estão sujeitos a uma transformação, dada aqui pela aplicação da função f. É sugestivo pensar nas sucessivas aplicações da função exactamente em termos temporais, considerando a órbita como um itinerário em que partimos do ponto x_0 e em que, ao fim de n segundos (ou horas ou dias...), nos encontramos no

 1 A definição da função f depende, de facto, do parâmetro eta, pelo que, quando se revelar conveniente, podemos designá-la por $f_{\it s}$. Quando não houver dúvidas sobre o parâmetro em questão, seguimos a prática muito comum de não o incluir na notação. Esta observação aplica-se também, aliás, aos coeficientes e_n .

[Uma Expansão-Beta?]

ponto x_y . O termo discreto refere-se exactamente ao facto de nesta interpretação o tempo ser discreto e não contínuo.

Uma forma de visualizar a órbita de um ponto x_0 passa por traçar, sobre o gráfico de f, a diagonal do quadrado $[0,1] \times [0,1]$ e determinar os pontos da órbita, começando no ponto $(x_0,0)$, subindo na vertical até encontrar o gráfico de f no ponto $(x_0, f(x_0)) = (x_0, x_1)$, seguir depois na horizontal até encontrar a diagonal em (x_1, x_1) , voltar a deslocar-se na vertical até ao ponto (x_1, x_2) , e assim por diante.

Vejamos agora qual o papel dos coeficientes e_v . Aconselhamos o leitor a acompanhar o seu raciocínio com a observação do gráfico da função f para b=2 ou b=3, bem como para uma base não inteira, como a do exemplo apresentado anteriormente. Esse gráfico é constituído por $\lfloor \beta \rfloor$ segmentos de recta, com declive β ; os extremos inferiores desses segmentos, todos sobre o eixo y=0, definem uma partição do intervalo [0,1] em intervalos de

monotonia de f. No caso de a base ser um inteiro b, $[0,1[=I_0\cup I_1\cup...I_{b-1}]$ onde $I_k=\left[\frac{k}{b},\frac{k+1}{b}\right]$, enquanto no caso de

uma base não inteira β temos $[0,1]=I_0\cup I_1\cup ...I_{|\mathcal{B}|}$ e os intervalos são definidos da mesma forma, com a única

diferença de que $I_{\lfloor \beta \rfloor} = \left[\frac{\lfloor \beta \rfloor}{\beta}, 1\right]$.

O coeficiente e_n é determinado pelo intervalo de monotonia a que x_{n-1} pertence, concretamente, e_n = $k \Leftrightarrow x_{n-1} \in I_k$, e à órbita de x_0 constituída por números reais, corresponde uma outra órbita ou itinerário simbólico, dado pela sucessão de intervalos visitados, ou seja, pela sucessão $\{e_n\}$, e torna-se claro que o itinerário simbólico determina completamente o ponto correspondente x_0 e a sua órbita.

O papel da função f no intervalo é representado para o conjunto dos itinerários simbólicos por um operador deslocamento que designamos σ , e que actua numa sucessão deslocando um lugar para a esquerda os elementos da sucessão e eliminando o primeiro: se x tem o itinerário simbólico $\{e_{\nu}, e_{\nu}...\}$, então f(x) tem o itinerário $\sigma(\{e_1, e_2, ...\}) = \{e_2, e_3, ...\}, \text{ o de } f^{(2)}(x) \in \sigma^{(2)}(\{e_1, e_2, ...\}) = \{e_3, e_4, ...\}, \text{ etc.}$

O conjunto das sucessões, munido do operador deslocamento, é usualmente designado por subshift. Esta correspondência entre órbitas constituídas por números reais e órbitas simbólicas está no cerne de uma das abordagens mais influentes no estudo dos sistemas dinâmicos, designada por dinâmica simbólica. No nosso caso, temos a propriedade muito particular de esta correspondência se traduzir nas igualdades $x=\sum_{k>1}e_k\beta^{-k}, f(x)=\sum_{k>1}e_{k+1}\beta^{-k}$, e assim por diante.

Tal como os números reais do intervalo [0,1[estão ordenados, também as respectivas sucessões simbólicas o estão através da chamada ordem lexicográfica, que não é mais do que a generalização da ordem alfabética usual: dizemos que a sucessão $\{e_n\}$ é menor do que $\{e'_n\}$ se para o primeiro termo em que diferirem se tiver e_m
 $<e'_m$. E há uma equivalência entre as duas ordens: x < x' se e só se os respectivos itinerários simbólicos $\{e_n\}$ e $\{e'_n\}$ estiverem na mesma relação.

Ainda uma última observação sobre a correspondência entre x_0 e a sua órbita, por um lado, e o respectivo itinerário simbólico, por outro. A sucessão $\{e_n\}$ indica-nos a sucessão de intervalos $I_{e_n}I_{e_n}$... sucessivamente visitados pela órbita, mas dá-nos também uma sucessão de intervalos $J_1 \supset J_2 \supset ...$ contendo o ponto inicial x_0 : o primeiro termo e_1 indica-nos apenas que $x_0 \in I_c = I_c$; mas $x_1 = f(x_0) \in I_c$ implica que $x_0 \in I_1 \cap f^{-1}(I_c) = I_2$; e_3 guarda a informação de que $x_2 \in I_c$ mas também de que $x_0 \in I_c \cap f^{-2}(I_c) = I_3$. Obtemos assim uma sucessão de intervalos encaixados, cuja intersecção é precisamente o ponto inicial da órbita. Observando o gráfico de f, vemos o que se passa com clareza: em cada passo, dividimos o intervalo J_n já encontrado em β subintervalos e o próximo coeficiente indica-nos qual deles é I_{mi} . Por exemplo, a expansão na base $2\sqrt{2}-1=0\times2^3+1\times2^2+1\times2^3+0\times2^4+1\times2^5+...$ mostra-nos que $x_0=\sqrt{2}$ -1está no intervalo $J_1=I_0=[0,1/2[$, já que $e_1=0$, mas $e_2=1$ diz-nos, mais precisamente, que $x_0 \in I_2 = [1/4, 1/2]$ e assim por diante.

Notemos agora a primeira diferenca entre expansões em base inteira e não inteira: no caso de uma base inteira b_i os intervalos de monotonia de f_b têm todos o mesmo comprimento e a imagem de qualquer um deles

 2 Deve ficar claro o significado dos expoentes negativos: $f^{-1}(I_{\nu_{\nu}})$ é a imagem inversa do intervalo pela função, ou seja, o conjunto $\{x \in [0,1]: f(x) \in I_{e_s}\}$; do mesmo modo, $f^2(I_{e_s})$ é a imagem inversa deste intervalo pela função composta f^2 .

[Uma Expansão-Beta?]

pela função é todo o intervalo [0,1[; pelo contrário, no caso de uma base não inteira, o $I_{|\beta|}$ é menor do que os outros e, mais importante, $f_{\beta}(I_{|\beta|})=[0,\beta+|\beta|[$.

Esta distinção traduz-se numa diferença muito significativa entre expansões em bases inteiras e expansões em bases não inteiras. No primeiro caso, os coeficientes são *independentes* no seguinte sentido: sejam quais forem os valores de e_{1} , e_{2} ,..., e_{n} , o coeficiente seguinte e_{n+1} pode assumir qualquer um dos valores admissíveis 0,1,...,b-1.

Pelo contrário, como $\sum_{k:1} \beta_{-} \beta_{-} \beta_{-}^{*} = \frac{\lfloor \beta_{-} \rfloor}{\beta_{-} 1} > 1$, existe um natural N tal que $\sum_{k:1}^{N} \lfloor \beta_{-} \rfloor \beta_{-}^{*} > 1$, e portanto, em qualquer expansão- β , os primeiros N coeficientes não podem ser todos iguais a $\lfloor \beta_{-} \rfloor$; os coeficientes não são portanto independentes.

Esta observação, feita já por Rényi, coloca o problema de saber como caracterizar o conjunto, chamemos-lhe X_{ν} das sucessões $\{e_{\nu}\}$ que podem ser a sucessão de coeficientes da expansão- β de algum $x \in [0,1[$.

Comecemos por realçar que para uma base inteira b as expansões construídas nunca terminam com uma infinidade de b-1; este facto, que confirmaremos já adiante, será igualmente familiar no caso b=10: uma dízima infinita terminando por uma infinidade de noves pode ser representada por uma dízima finita (ou, se se preferir, terminando numa infinidade de zeros); por exemplo, 0.7659=0.766.

O mesmo é verdade para expansões em qualquer base inteira b: o "segredo" deste facto está na conhecida fórmula da soma de uma progressão geométrica, já usada no parágrafo anterior: $\sum_{k\geq 0} b^k = \frac{b}{b-1}$. Daqui decorre que se $e_n \neq b-1$ e $e_k = b-1 \forall k > n$, então $\sum_{k>n} (b-1)b^k = (b-1)b^{n-1} \sum_{k\geq 0} b^k = b^n$ e portanto $\sum_{k>n} b^n + \dots + e_n b^n + \sum_{k>n} (b-1)b^k = e_n b^m + \dots + (e_n+1)b^n$.

O que se passa é que a construção da expansão que descrevemos atrás "evita" este tipo de ambiguidade, escolhendo sempre a expansão finita. Recorde-se, de facto, que para um dado ponto inicial x_0 , se tem $x_0 = \sum_{k=1}^n e_k b^k + x_n b^n$ onde $0 \le x_n < 1$; mas, por outro lado, $x_n b^n = \sum_{k>n+1} e_k b^k$ e portanto, pelos cálculos feitos atrás, se os coeficientes nesta última soma fossem todos iguais a b-1, teríamos $x_n = 1$.

Esta é de facto a única restrição: o conjunto X_b pode ser caracterizado pelas condições $\{e_n\}$ \in X_b se e só se

- $1.0 \le e_n < b$ para todo o $n \ge 1$
- 2. $\{e_n\}$ não termina com uma infinidade de b-1.

Esta última condição pode ser enunciada com vantagem do seguinte modo: $\sigma^m(\{e_n\}) < b - 1$, para todo o $m \ge 1$, onde a desigualdade deve ser naturalmente entendida no sentido da ordem lexicográfica já referida e b - 1 designa a sucessão constante.

Como vimos já, $\sum_{k\geq 1}(b-1)b^k$ é a "falsa" expansão na base b de 1. Ela pode também ser vista como a expansão limite quando aproximamos 1 pela esquerda; por exemplo, a expansão na base b de $1-b^m$ é, como o leitor facilmente verificará, $\sum_{k=1}^{m}(b-1)b^k$.

Reencontramos um fenómeno semelhante no caso de uma base não inteira. Seja β - $\lfloor \beta \rfloor$ = $\sum_{k>1} e'_k \beta^{k-1}$ a expansão β 0 usual; o leitor verificará facilmente que temos a igualdade 1= β - β -1+ $\sum_{k>1} e'_k \beta^{k-1}$ = $\sum_{k>1} e_k \beta^{k-1}$; caso esta expansão seja infinita, é ela a "falsa" expansão de 1; caso aquela expansão seja finita, é preciso substituí-la por uma outra: de facto, se se tiver 1= $\sum_{k=1}^{m} e_k \beta^{k}$, naturalmente com e_m >0, um cálculo simples envolvendo a soma de uma série geométrica com razão β^m , dá-nos

$$1 = \sum_{k \ge 1} \beta^{-km} \sum_{j=1}^{m-1} e_j \beta^{-j} + (e_m - 1) \beta^{-m}$$

O que se passa é que, enquanto a expansão finita está associada à sucessão de coeficientes $e_1...e_m\bar{0}$, a expansão infinita está associada à sucessão $e_1...(\bar{e}_m-1)$, que é menor do que aquela na ordem lexicográfica.

O exemplo mais simples é o da raiz positiva β do polinómio z^2 -z-1: temos nesse caso, como facilmente se verifica.

$$1 = \beta^{-1} + \beta^{-2} = \beta^{-1} + \beta^{-3} + \beta^{-5} + \dots = \sum_{k \ge 1} \quad \beta^{-2k+1}$$

[Uma Expansão-Beta?]

Vamos usar a notação especial $\sum_{k>1} c_k \beta^k$ para esta "falsa" expansão de 1 na base β .

Pouco depois do artigo inicial de Rényi, o matemático inglês Bill Parry esclareceu completamente, entre outros aspectos, que sucessões de coeficientes podem ocorrer nas expansões- β ; usando a notação anterior, $\{e_a\} \in X_a$ se e só se, para todo o $n \ge 1$,

- $1.0 \le e_n < \beta$
- 2. $\sigma^{m}(\{e_{n}\}) < \{c_{n}\}.$

É claro que os casos em que a sucessão $\{c_n\}$ é eventualmente periódica, e especialmente quando é estritamente periódica, têm um interesse particular. Prova-se que a sucessão $\{c_n\}$ é estritamente periódica se e só se o conjunto X_{β} das sucessões de coeficientes das expansões- β é um "subshift de tipo finito" e que a sucessão $\{c_n\}$ é eventualmente periódica se e só se o conjunto X_{β} das sucessões de coeficientes das expansões- β é um "subshift sofic". Não podemos debruçar-nos aqui sobre a definição e as propriedades destes importantes sistemas dinâmicos simbólicos, que são, num certo sentido, os mais simples e portanto os que se prestam mais facilmente a um estudo detalhado.

É aqui que surge a interacção com as propriedades aritméticas da base β . Curiosamente, não são os números algebricamente mais simples, ou seja, os racionais, os que dão origem a expansões mais fáceis de caracterizar. No momento actual, parece quase tão difícil estudar as expansões- β para β = π como para β =3/2! Para caracterizar as bases não inteiras mais simples temos de entrar, ainda que muito superficialmente, no terreno da Teoria dos Números Algébricos.

Um número β diz-se algébrico se for raiz de um polinómio com coeficientes racionais (em que podemos assumir que o coeficiente do termo de maior grau é 1). Entre todos os polinómios desta forma que têm β como raiz, existe um de grau mínimo, o chamado polinómio minimal de β . As restantes raízes (reais ou complexas) do polinómio minimal de β são os seus conjugados. Finalmente, se os coeficientes do polinómio minimal de β forem inteiros, este é um inteiro algébrico.

Um número de Perron é um inteiro algébrico β real maior do que 1 e maior em módulo do que todos os seus

conjugados. Por exemplo, $\sqrt{2}$ é um inteiro algébrico mas não um número de Perron, enquanto $\frac{5+\sqrt{5}}{2}$ é um número de Perron.

Um número de Pisot é um número de Perron cujos conjugados têm todos módulo menor do que 1.

Ora, prova-se que se β é um número de Pisot, então a respectiva sucessão $\{c_n\}$ é (eventualmente ou puramente) periódica e portanto o conjunto X_g é de tipo finito ou, pelo menos, *sofic*.

No sentido inverso, prova-se que se a sucessão $\{c_n\}$ é eventualmente ou puramente periódica, então β é um número de Perron.

Mas existem números de Perron cuja sucessão não é eventualmente periódica, tal como existem outros que têm sucessão eventualmente ou até puramente periódica que não são números de Pisot. Em resumo, a caracterização algébrica ou aritmética das bases em relação à complexidade das expansões associadas é ainda, em parte, um problema em aberto.

Resta-nos mencionar um outro aspecto das expansões- β que se mantém igualmente como tema de intensa investigação: a caracterização, em função da base, dos números com expansão finita ou periódica.

No caso de uma base inteira b, o problema é elementar.

A expansão na base b de x_0 é finita se e só se x_0 é um racional $\frac{p}{q}$ tal que todos os factores primos de q dividem

b. De facto, se a expansão for finita, temos $x_0 = \sum_{k=1}^n e_k b^k = \frac{p_n}{h^n}$, o que mostra que a condição é necessária.

Reciprocamente, se $x_0 = \frac{p}{q}$ e todos os factores primos de q dividem b, é evidentemente possível, multiplicando o

numerador e o denominador por um factor apropriado, escrever $x_0 = \frac{p'}{b^m}$. Como p' tem uma expansão finita na

base $b, p' = \sum_{j=0}^{n} a_j b^j$, em que os coeficientes satisfazem $0 \le a_j < b$, temos $x_0 = \sum_{j=0}^{n} a_j b^{j,m} = \sum_{k=m,n}^{m} e_k b^{-k}$, definindo $e_k = a_{m-k}$.

[Uma Expansão-Beta?]

Por outro lado, como o leitor certamente sabe, pelo menos no caso b=10, a expansão de x_0 na base b é (eventualmente) periódica se e só se x_0 for racional.

Deixamos ao leitor a tarefa de verificar que uma expansão eventualmente periódica, numa base inteira b, corresponde a um número racional. Para provar a recíproca, chamamos a atenção para o facto de que se

 $x_0 = \frac{p}{q}$ temos $b \frac{p}{q} = e_1 + x_1$, ou seja, $bp = qe_1 + qx_1$, o que implica que qx_1 é um inteiro e o mesmo se passa obviamente para

todos os x_n ; mas há apenas um número finito de números no intervalo [0,1] que satisfazem essa condição, pelo que a sucessão x_n tem de ser eventualmente periódica, o que implica que também a sucessão e_n seja eventualmente periódica.

Os problemas correspondentes para bases não inteiras são consideravelmente mais difíceis e os resultados mais significativos envolvem, mais uma vez, elementos da Teoria dos Números Algébricos.

Seja β um número algébrico. O conjunto dos números da forma $x=\sum_{i=0}^{m}q_{i}\beta^{i}$ constitui um corpo, designado por $\mathbb{Q}[\beta]$. Não é difícil deduzir que se $x = \sum_{k>1} e_k \beta^{-k}$ tem expansão- β periódica, então $x \in \mathbb{Q}[\beta]$.

Os matemáticos Anne Bertrand-Mathis e Klaus Schmidt demonstraram que a recíproca é verdadeira se β for um número de Pisot, ou seja, designando por $Per(\beta)$ o conjunto dos números $x \in [0,1[$ que têm expansão- β (eventualmente ou puramente) periódica, tem-se $Per(\beta) = \mathbb{Q}[\beta] \cap [0,1[$.

Esta propriedade não é exclusiva dos números de Pisot, mas Schmidt provou que se $\mathbb{Q} \cap [0,1[\subset Per(eta),$ então β é necessariamente um número de Pisot ou de Salem.

Nos últimos anos, a investigação sobre as expansões- β e suas generalizações tem-se mantido extremamente activa através do trabalho de matemáticos como Anne-Bertrand Mathis, Christiane Frougny, David Boyd, Nikita Sidorov ou Shigeki Akiyama, entre outros. Os problemas relacionados com a caracterização das expansões periódicas têm sido, sem dúvida, dos que mais têm concentrado as atenções dos investigadores.

Apesar de as expansões- β serem objecto de estudo de numerosos artigos de investigação e um exemplo constantemente referido, quer no contexto da Teoria dos Sistemas Dinâmicos quer em certos aspectos da Teoria dos Números Algébricos, o autor destas linhas não conhece um livro que faça uma apresentação elementar e razoavelmente completa e actualizada destes interessantes objectos matemáticos. Deixamos, no entanto, ao leitor mais interessado algumas referências bibliográficas que podem servir de ponto de partida para o seu estudo.MI

Bibliografia:

Blanchard, F., (1989). "β-expansions and Symbolic Dynamics", Theoretical Computer Science, 65, 131-141.

Lind, D., Marcus, B., (1995). "Symbolic Dynamics and Coding", Cambridge University Press.

Parry, W., (1960). "On the β -expansion of Real Numbers", *Acta Math. Hungar*, 11, 401-416.

Rényi. A., (1957). "Representations for Real Numbers and Their Ergodic Properties", Acta Math. Hungar., 8, 477-493.

Schmidt, K., (1980). "On Periodic Expansions of Pisot Numbers and Salem Numbers", Bull. London Math. Soc. 12, no 4, 269-278.

Sidorov, N., (2003). "Arithmetic Dynamics, a survey paper", Topics in Dynamics and Ergodic Theory, LMS Notes Ser. 310, 145-189.

