ALFREDO COSTA Universidade de Coimbra amgc@mat.uc.pt

A FÓRMULA DE HERÃO

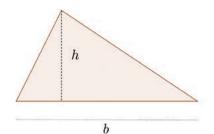
Pelas suas simplicidade e aplicabilidade no cálculo de áreas de triângulos, a fórmula de Herão sobressai como tópico adequado para o enriquecimento extracurricular de alunos do Ensino Básico.

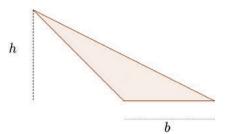
1. INTRODUÇÃO

Não raramente, nomeadamente na Matemática Olímpica, um estudante do Ensino Básico é confrontado com a necessidade de calcular a área de um triângulo não retângulo, conhecendo apenas o comprimento dos seus lados. A fórmula de Herão permite enfrentar imediatamente esse desafio.

O nome desta fórmula deve-se ao matemático helénico Herão de Alexandria, do primeiro século depois de Cristo, que a deriva no seu livro *Métrica* [3].

Damos aqui conta de uma aula do Delfos Júnior, lecionada pelo autor a 18 de novembro de 2023, sobre a fórmula de Herão.

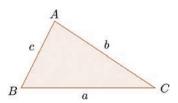

O Delfos Júnior é a secção da Escola Delfos destinada a alunos do 5.º ao 8.º anos de escolaridade. Os alunos desta secção visitam a Universidade de Coimbra num sábado de cada mês do período escolar. Aí participam em atividades que decorrem entre as 10h e as 16h, aproximadamente. Tipicamente, o programa contém duas aulas de duas horas. Foi essa a duração da aula a que nos reportamos. Durante a aula foi distribuída uma ficha com problemas sobre a fórmula de Herão. Uma discussão introdutória precedeu a resolução dos problemas. Além do acompanhamento do professor, os alunos tiveram no lugar o apoio de Dantas Serra, um estudante da Licenciatura em Matemática da Universidade de Coimbra.


2. ENUNCIADO DA FÓRMULA

De seguida, apresentamos a fórmula de Herão, transcrevendo o resumo que encabeçava a ficha distribuída aos alunos (texto entre aspas):

"Comecemos por recordar que a área de um triângulo de base com comprimento b e altura com comprimento h é dada pela fórmula

$$Área = \frac{bh}{2}.$$



Vamos aprender uma fórmula alternativa para calcular a área de um triângulo. Dado um triângulo de lados com comprimentos *a*, *b*, *c*, o seu *semiperímetro* é

$$s = \frac{a+b+c}{2},$$

ou seja, s é a metade do perímetro do triângulo.

A fórmula de Herão é uma fórmula de cálculo para a área de um triângulo com lados de comprimentos a, b e c. A fórmula é a seguinte:

$$\text{Area} = \sqrt{s(s-a)(s-b)(s-c)},$$

onde s é o semiperímetro do triângulo."

3. PROBLEMAS RESOLVIDOS

Os primeiros problemas da ficha distribuída eram meros exercícios nos quais se pedia que os estudantes calculassem as áreas de vários triângulos cujos lados eram conhecidos, usando a fórmula de Herão. Os alunos ultrapassaram facilmente esta etapa, fortalecendo a sua confiança para atacar os problemas seguintes.

O primeiro problema¹ não trivial foi o seguinte:

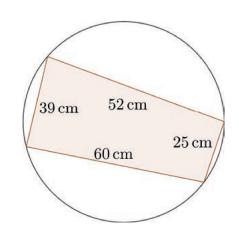
Um triângulo tem lados de comprimentos

20, 101 e 99. Determina as suas alturas.

A
20
101
B
99

A chave para a resolução consiste em calcular a área do triângulo de duas formas: com a fórmula de Herão e com a fórmula aprendida na escola, desse modo obtendo uma simples equação na variável "altura". O problema é instrutivo por colocar a ênfase na importância de relacionar diferentes formas de calcular a mesma coisa. Depois de o problema ter sido resolvido segundo esta abordagem, alguns alunos repararam que o triângulo é retângulo, o que suscitou um estimulante diálogo sobre o recíproco do Teorema de Pitágoras e sobre o desacordo entre uma figura e o que ela representa (na figura, os lados de comprimento 99 e 20 não aparentam formar um ângulo reto).

No exercício seguinte introduziu-se a fórmula de Brahmagupta, tendo no final da sua resolução havido uma pequena discussão em que se identificou a fórmula de Herão como um caso degenerado da fórmula de Brahmagupta.


A área de um quadrilátero inscritível numa circunferência e que possui lados de comprimentos a,b,c e d é

$$\sqrt{(s-a)(s-b)(s-c)(s-d)}$$

onde

$$s = \frac{a+b+c+d}{2}.$$

Esta fórmula, análoga à fórmula de Herão, é a chamada fórmula de Brahmagupta. Determina a área do quadrilátero do desenho abaixo.

