MATEMÁTICAS GERAIS—ÁLGEBRA SUPERIOR—COMPLEMENTOS DE ÁLGEBRA

F. C. C. - ALGEBRA SUPERIOR - Exame final, 1941

1033 — Mostrar que todo o polinómio f(x)= $=a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ se pode escrever com a forma

$$f(x) = \begin{vmatrix} a_0 & -1 & 0 & \cdots & 0 & 0 \\ a_1 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & 0 & 0 & \cdots & x & -1 \\ a_n & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

R: Desenvolvendo o determinante segundo os elementos da primeira linha vem

$$\begin{vmatrix} f(x) = a_0 & x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & x \end{vmatrix} + \begin{vmatrix} a_1 & -1 & 0 & \cdots & 0 & 0 \\ a_2 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

 $f(x)=a_0x^n+\Delta_{n-1}$.

Desenvolvendo An-1 segundo os elementos da primeira linha vem $f(x) = a_0 x^n + a_1 x^{n-1} + \Delta_{n-2}$.

Procedendo para Δ_{n-2} , $\Delta_{n-3} \cdots \Delta_2$ como para Δ_{n-1} vem $f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$.

1034 - Calcular o raio do círculo de convergência da série $1+5s+\frac{5^2}{24}s+\cdots+\frac{5^n}{n4}s^n+\cdots$

R: Aplicando o critério d'Alembert, obtém-se $\left| \frac{5^{n+1}z^{n+1}/(n+1)!}{5^nz^n/n!} \right| = |z| \cdot \lim_{n \to \infty} \frac{5}{n+1} = |z| \frac{1}{\infty}$ logo o raio de circulo de convergência é ...

1035 — Calcular
$$\lim_{n\to\infty}\frac{1}{n}\cdot {}^n\sqrt{(n+1)(n+2)\cdots(2n)}$$
.

R: \hat{E} sabido que $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{u_{n+1}}{u_n}$. Então $\lim_{n \to \infty} \frac{1}{n} \sqrt{(n+1)(n+2) \cdot \cdot \cdot (2n)} =$

$$=\lim_{n\to\infty} \sqrt[n]{\frac{(n+1)(n+2)\cdots(2n)}{n^n}}=$$

$$= \lim_{n \to \infty} \frac{(n+2) (n+3) \cdots (2n) (2n+1) (2n+2) n^n}{(n+1)^{n+1} (n+1) (n+2) \cdots (2n)} =$$

$$= \lim_{n \to \infty} \frac{(2n+1)(2n+2) n^{n}}{(n+1)^{n+2}} = \lim_{n \to \infty} \frac{4n^{n+2} + 6n^{n+1} + 2n^{n}}{(n+1)^{n+2}} = \lim_{n \to \infty} \frac{4 + \frac{6}{n} + \frac{2}{n^{2}}}{\left(1 + \frac{1}{n}\right)^{n} \cdot \left(1 + \frac{1}{n}\right)^{2}} = \frac{4}{e}.$$

$$= \lim_{n \to \infty} \frac{4 + \frac{6}{n} + \frac{2}{n^2}}{\left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right)^2} = \frac{4}{e}.$$

1036 – Se a equação f(x)=0 de coeficientes inteiros tem uma raíz inteira e se a e b designam dois números inteiros quaisquer, mostrar que um, pelo menos, dos números inteiros f(a), $f(a+1), \dots f(a+b-1)$ é divisível por b. R: Depreende-se do enunciado que a equação f(x)=0 é algebrica de coeficientes inteiros e admite uma rais inteira k. Então f(x)=(x-k) f1(x) onde f1(x) é um polinómio inteiro em x de coeficientes inteiros. Façamos nesta igualdade, $x=a, a-1, \dots (a+b-1)$, vem $f(a) = (a-k)f_1(a)$, $f(a+1) = (a-k+1)f_2(a+1)$,... $f(a+b-1)=(a-k+b-1)f_1(a+b-1)$. Dos números inteiros consecutivos (a-k), (a-k)+1, ... (a-k)+1+b-1, em números de | b |, um dêles é divisivel por b. Logo, dos números f(a), f(a+1), ... f(a+b-1)um pelo menos é divisivel por b.

1037 — A que condições deve obedecer o ponto variável (α, β) para que a cónica $(\alpha-1)x^2+2\beta xy -(\alpha+1)y^2+2\alpha x+2\beta y-(\alpha+1)=0$ represente uma parábola. R: A equação dada representa uma parábola se $\beta^2+(\alpha+1)(\alpha-1)=0$ ou $\alpha^2+\beta^2=1$. Por outras palauras, a cónica será uma parábola se no plano Oaß o ponto (a, B) pertence à circunferência de centro na origem e de raio igual à unidade, será uma elipse se o ponto (a, 3) é interior à circunferência e será uma hipérbole se o ponto é exterior à mesma circunferência.

Qualquer que seja o gênero da cónica esta será degenerescente se se anular o invariante cúbico, ou, o que é o mesmo, se o ponto (α, β) pertence à curva de equação

$$\begin{vmatrix} \alpha - 1 & \beta & \alpha \\ \beta & -\alpha - 1 & \beta \\ \alpha & \beta & -\alpha - 1 \end{vmatrix} = 0 \longrightarrow 2\alpha^3 + 2\beta^2 + 2\alpha^2 + 2\beta^2 - \alpha - 1 = 0$$

que é a recta x+1=0 se se trata duma parábola.

1038 - Mostrar que as medianas de um triângulo são concorrentes. Encontrar o seu ponto de encontro, R: Seja o triangulo ABC. Escolhamos para sistema de referência aquêle que é constituido por dois eixos ortogonais, contendo o eixo xx' o lado AB e pertencendo o vertice C ao eixo yy'. Sejam a e b as abscissas de A e B e seja c a ordenada de C. Então, as equações das medianas são 2cx + (a + b)y = (a + b)c, cx + (2a - b)y = accx+(2b-a) y=bc. Elas serão concorrentes se o sistema formado por estas equações for compativel ou, o que é o mesmo, se for nulo o característico

$$\begin{vmatrix} 2c & a+b & (a+b)c \\ c & 2a-b & ac \\ c & 2b-a & bc \end{vmatrix} = 0.$$

Esta condição é verificada, visto que a primeira linha do determinante é a soma das duas últimas.

O ponto de encontro, cujas coordenadas se obtêm pela resolução do sistema, é (b-a)/3, c/3.

Soluções dos n.º 1035 a 1038 de A. Sá da Costa.

F. C. L. — ALGEBRA SUPERIOR — Exames finals, 1941
 — Alguns pontos.

1039 — Determine as equações da recta que passa pelo ponto P(0,2,-1) e pelo ponto do plano π em que é x=2, y=1. Calcule o ângulo que tal recta faz com o plano π . $\pi \equiv$ plano diametral da quádrica $x^2+4y^2-3z^2+3xy+4xz+2yz+3x-y+2z-6=0$ conjugado com Oz.

R:
$$\mathbf{r} = \begin{cases} \mathbf{x} = -2\mathbf{y} + 4 \\ \mathbf{z} = -3\mathbf{y} + 5 \end{cases}$$

1040 — Escreva a equação da cónica $2y^2-4xy++5x^2-2x+2y-1=0$ referida aos seus eixos e determine as coordenadas dos seus focos.

R:
$$\frac{x^2}{9} + \frac{y^2}{3/2} = 1$$
, F($\pm \sqrt{15}/2$, 0).

1041 — Deduza a equação do plano radical das esferas Σ_1 , Σ_2 e verifique que a recta dos centros è perpendicular a èsse plano. Σ_1 é a esfera que passa pelos pontos (0,1,0) (-1,0,2), tal que a origem tem potência 3 em relação a Σ_1 e cujo centro pertence ao plano x=2y. A equação de Σ_2 é $x^2+y^2+z^2+4x+2y-2z-9=0$. R: $\pi\equiv 6x+3y-z-6=0$.

1042 — Escreva na forma canónica a equação da parábola $y^2-2xy+x^2-5y-7x+3=0$, e verifique que, referida a êste sistema de eixos, o diâmetro conjugado de Oy é o eixo Os.

R: $y^2=3\sqrt{2}$. x.

1043 — As rectas x=0, y=0, 2x-y-8=0, x+2y-16=0 formam um quadrilátero inscriptível. Calcule as coordenadas do centro e o raio da circunferência circunscrita.

R: $\Sigma \equiv x^2 + y^2 - 4x - 8y = 0$, C(2, 4), $r = \sqrt{10}$.

1044 — Deduza a equação do plano de feixe de sède em r) $\begin{cases} x=s \\ y=3 \end{cases}$ que corta a esfera x^2+y^2+ $+s^2-4x+2s-11=0$ segundo uma circunferência de raio 3. R: $x-z+\lambda(y-3)=0 \longrightarrow \lambda=\frac{9\pm\sqrt{91}}{2}$.

1045 — Determine as equações das tangentes tiradas do ponto (7,1) para a circunferência que passa pelo ponto (1,2) e forma com $\Sigma \equiv x^2 + y^2 - 3x + y - 2 = 0$ um sistema do eixo radical $e \equiv 3x - y - 3 = 0$. R: $\Sigma_1 \equiv x^2 + y^2 = 5$, $t_1 \equiv x - 2y - 5 = 0$, $t_2 \equiv 2x - 11y - 3 = 0$.

Nota — O problema do traçado de tangentes a uma circunferência por um ponto exterior a esta resolve-se făcilmente considerando que uma tal tangente deverá passar por êsse ponto e a uma distância do centro da circunferência igual ao seu raio.

Soluções dos n.ºs 1039 a 1045 e nota do n.º 1045 de J. Pais Morais,

Contêm pontos de exames finais de Álgebra Superior, os seguintes números da • Gazeta de Matemática»: 4 e 7.

F. C. L. — MATEMÁTICAS GERAIS — 2.º exame de freqüência, 2 de Junho de 1942.

sentá-la gràficamente no intervalo (0,3); indicar o contra-domínio correspondente, os pontos de descontinuïdade e os pontos em que não admite derivada; escrever a equação da tangente no ponto x=3/2. R: Tem-se para $0 \le x < 1 \rightarrow y=1$, $1 \le x < 2 \rightarrow y = x^2+1$, $e \ 2 \le x < 3 \rightarrow y = 2x^2+1$. O gráfico pedido reduz-se pois a um segmento de recta e a 2 arcos de parábola. O contradominio è definido por y=1, $2 \le y < 5$ e $9 \le y < 28$. São pontos de descontinuïdade os de abscissa inteira. Nestes a função y não admite derivadas, podendo porêm definir-se uma semi-derivada à esquerda e à direita.

Para x=3/2 é y=I (3/2).(3/2)²+1=9/4+1=13/4 e y'_{3/2}=2.3/2+1=4; a tangente tem pois por equaequação Y=13/4=4 (X=3/2).

1047 — Estudar a série de têrmo geral $u_n = \frac{2n}{3n^3+1}, \quad \text{e no caso da convergência determinar um limite superior do êrro cometido tomando para valor aproximado da soma da série a soma dos 10 primeiros têrmos da série. R: Tem-se <math display="block">u_n = \frac{2n}{3n^3+1} < \frac{2}{3} \cdot \frac{1}{n^2} \ e \ a \ série \ dada \ é \ portanto \ convergente. \ Para \ a \ série \ de \ têrmo \ geral \ \frac{2}{3} \cdot \frac{1}{n^2},$ majorante da dada, é fâcil estabelecer um limite superior do resto, limite portanto do resto da série dada. Com efeito tomando os 9 primeiros térmos duma série de Derichlet convergente $\sum_{i=1}^{\infty} \frac{1}{n^{1+2}} \ um$ limite superior é $\frac{1}{q^2} \frac{1}{1-\frac{1}{2n}}. \ No \ nosso \ caso \ é$

1048 — Determinar a equação da superfície de revolução gerada pela rotação em torno do eixo das ordenadas da curva de equações: $(y-1)^2+$ $+(z-3)^2-4=0$, x=0. Escrever as equações dos paralelos de menor raio e de maior ordenada. R: A superfície pedida é um toro. A equação

q = 10 z = 1.

-1 1 0

obtém-se pela substituïção na equação da geratriz (situada no plano x=0) de z por $\sqrt{x^2+z^2}$; vem: $(y-1)^2+\left(\sqrt{x^2+z^2}-3\right)^2-4=0$, ou $(x^2+y^2+z^2-2y+6)^2-4$ $(x^2+z^2)=0$. O paralelo de menor raio é o gerado pelo ponto (0,1,1) e tem por equações, por exemplo, y=1, $x^2+z^2=1$; o de maior ordenada é o gerado pelo ponto (0,3,3) e tem por equações: y=3, $x^2+z^2=9$.

Soluções dos n.º5 1046 a 1048 de Manuel Zaluar.

S. A. — 2.º Exame de frequência, 28-5-1942

1049 - Determine, pelo método de resolução das equações numéricas as raízes da equação $2x^3-x^2+2x-1=0$. R: São os seguintes, os resultados da resolução numérica da equação dada. A equação não tem raises inteiras porque os divisores do têrmo independente + 1 não satisfazem a equação proposta. A transformada da equação em $y=2x \ \dot{e} \ y^3-y^2+4y-4=0$, cujo têrmo independente admite como divisores $\pm 1, \pm 2, \pm 4$. Dêstes só poderá ser rais da transformada +1 visto que um limite superior das raises positivas é 2 (método de Bret) e a equação transformada em $z=-y \in z^3+z^2+4z+4=0$, cujo primeiro membro não tem variações. O divisor +1 é de facto raiz. A equação y3-y2+4y-4=0 desembaraçada da raiz +1 reduz-se a y2+4=0 cujas raizes são ±2i. Portanto, as raizes da equação proposta são 1,2,+i.

1050 — a) Defina coordenadas cartezianas rectangulares e coordenadas esféricas de um ponto no espaço. Indique quais são os lugares geométricos das equações que se obtêm igualando a zero cada uma das seis coordenadas indicadas. b) Determine, pela aplicação do Teorema de Rouché, as posições relativas dos três planos x-2y+3z-1=0, 2x+3=0, 4x-4y+3s-2=0. R: O sistema de equações lineares, constituído pelas equações dos três planos, è compativel e indeterminado de grau 1, visto que a matriz dos coeficientes e a dos coeficientes e dos têrmos independentes têm ambas característica 2. Portanto, os três planos formam feixe.

1051 — Determine a equação do plano que passa pelo ponto P(1,2,0) e é paralelo às rectas de

equações
$$\begin{cases} x = z + 1 \\ y = 3z \end{cases} \begin{cases} x - 2z + 1 = 0 \\ y + z - 3 = 0 \end{cases}$$
 R: Seja

Ax+By+Cz+D=0 a equação do plano. A introdução das condições contidas no enunciado conduz ao sistema de equações lineares e homogêneas em

$$\begin{array}{c} A \,,\, B \,,\, C \,,\, D \,\, \left[\begin{array}{ccc} Ax + By + Cz + D = 0 \\ A + 2B + D = 0 \\ A + 3B + C = 0 \end{array} \right. & o \,\, qual \,\, admi-\\ 2A - B + C = 0 & \\ tirá \,\, soluções \,\, não \,\, nulas \,\, se \,\, fór \,\, \left[\begin{array}{ccc} x & y & z & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 3 & 1 & 0 \end{array} \right] = 0 \end{array}$$

ou 4x+y-7z+6=0. É esta a equação do plano.

1052 — Figure os traços dum plano π oblíquo em relação aos dois planos de projecção e as projecções duma recta r também oblíqua em relação aos mesmos planos de projecção. Determine gràficamente o ângulo ϕ de r com π .

Contêm pontos de segundos exames de freqüência de Matemáticas Gerais e Álgebra Superior os seguintes números da «Gazeta de Matemática»: 2, 6 e 10.

I. S. C. E. F. - Exame final, 17-7-1941

1053 — Fazer o estudo e o traçado da curva de equação y^2 —sen 2x=0. Verificar que as funções definidas por esta equação satisfazem à relação y(xy'+y''')+3y'y''=0. R: A curva é simétrica em relação ao eixo xx', porque $y=\pm \sqrt{\sin 2x}$. A curva não tem pontos cujas abscissas pertençam aos intervalos abertos $[k\pi, (2k+1)\pi/2]$ onde k é um número inteiro positivo ou negativo. Também não tem pontos cujas ordenadas pertençam a qualquer dos intervalos abertos $(-\infty, -1)$ e $(1, \infty)$. Qualquer das funções definidas por $y=\pm \sqrt{\sin 2x}$ é periódica de periodo π . Em virtude da simetria e da periodicidade, o estudo e o traçado reduzem-se ao estudo e ao traçado da curva de equação $y=+\sqrt{\sin x}$ para $0 \le x \le \pi/2$. Por serem

$$\begin{aligned} \mathbf{y}^{l} &= \cos 2\mathbf{x} / \sqrt{\sec 2\mathbf{x}} \,, \quad \mathbf{y}^{ll} = -\frac{\sec^{2} 2\mathbf{x} + 1}{(\sec 2\mathbf{x})^{3/2}} \quad e \\ \mathbf{y}^{lll} &= \frac{\cos 2\mathbf{x} \, (3 - \sec^{2} 2\mathbf{x})}{(\sec 2\mathbf{x})^{5/2}} \,, \quad o \quad ponto \quad (\pi/4 \,, 1) \quad \dot{e} \quad de \end{aligned}$$

máximo para y, que é crescente no intervalo $(0,\pi/4)$ e decrescente no intervalo $(\pi/4,\pi/2)$ e a concavidade da curva está voltada no sentido dos yy negativos no intervalo $(0,\pi/2)$.

1054 — Estudar no ponto x=1, a derivada da função y(x) assim definida: y(1)=0, para $x \neq 1 \rightarrow y = (x-1)/(1+e^{1/x-1})$. R: A função è continua no ponto x=1 porque y(1)=0 por definição e $\lim_{x \to 1=0} y(x) = -0$ $\lim_{x \to 1=0} y(x) = +0$. A derivada de y(x) para $x \neq 1$ è $y'(x) = x - 1/(1+e^{1/x-1})$ e $\lim_{x \to 1=0} y'(x) = 0$, $\lim_{x \to 1=0} y'(x) = 1$. Logo o ponto x=1 è de descontinuïdade finita de 1.0 espécie para a

derivada y'(x) e será um ponto anguloso para a curva de equação y=y(x). Equações das tangentes no ponto x=1:y=0 e y=x-1.

1055 — Determinar com um êrro inferior a 1/10 as raizes da equação $P(x) \equiv x^4 + 3x - 11 = 0$. R: A equação proposta não admite raises inteiras porque dos três números P(-1), P(0), P(1) nenhum è divisivel por 3. Não admiteraizes racionais fraccionarias porque o coeficiente de xi é igual à unidade. Da aplicação do Teorema de Descartes decorre a afirmação de que a equação proposta admite uma raiz real positiva e outra real negativa. O limite superior das raises positivas é 3 e o inferior das raises negativas é -3. Para x = -3, -2, -1, 0, 1, 2, 3, P(x) toma valores cujos sinais são, respectivamente, + - - - + + . Logo as raizes reais pertencem aos intervalos (-3, -2)e (1,2). O estudo dos sinais dos valores que P(x) toma para x=-3; -2,9; -2,8; -2,7; -2,6;-2,5;-2,4;-2,3;-2,2;-2,1;-2 e para x=1; 1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 1,7; 1,8;1,9; 2 mostra que aquelas raises pertencem aos intervalos (-2,1;-2) e (1,5;1,6). Os extremos déstes intervalos são valores aproximados, por defeito e por excesso, das raises reais da equação proposta, nas condições do enunciado.

I. S. T. - Exame final

1056 — Sendo $x.y.^{x}\sqrt{e}=1$, calcular os verdadeiros valores de y para x=+0 e x=-0. R: $Tem\cdot se$ $y=1/x.^{x}\sqrt{e}$. Portanto $\lim_{x\to +0} y=$ $=\lim_{x\to +0} \frac{1/x}{e^{1/x}} = \lim_{x\to +0} \frac{-1/x^{2}}{-1/x^{2}.e^{1/x}} = \lim_{x\to +0} \frac{1}{e^{1/x}} = 0$ $\lim_{x\to -0} y = -\lim_{x\to +0} \frac{e^{1/x}}{x} = -\infty.$

1057 — Traçar a cónica $11x^2 + 84xy - 24y^2 = 156$ e calcular a sua excentricidade.

1058 — Mostrar que a função $y = \frac{ax-11}{x+a-12}$

é sempre crescente, ou decrescente ou constante. Determinar os valores de a correspondentes a cada

um dêsses três casos. R: Tem-se $y' = \frac{a^2-12a+11}{(x+a-12)^2}$.

Portanto, o sinal da derivada depende só do numerador. A discussão do trinómio $a^2-12a+11$, cujas raizes são 1 e 11, mostra que a derivada é nula para a=1, 11, é positiva para a<1 ou a>11 e negativa para 1< a<11. Logo a função é crescente se a<1 ou a>11, é decrescente se 1< a<11 e é constante se a=1, 11.

1059 — Seja uma recta r e dois pontos P e Q que se projectam sobre r em P' e Q' respectivamente. Seja $\overline{P'Q'}=c$, $\overline{PP'}=a$, $\overline{QQ'}=b$. Calcular o limite de $\overline{MP}-\overline{MQ}$ quando M, colocado em r, se afasta ao infinito num sentido ou noutro.

1060 — Sendo y uma função de x definida pela equação $x^{2/3}+y^{2/3}=1$, mostrar que é y''=1/3 $x^{-4/3}$. $y^{-1/3}$ sendo y'' a 2.4 derivada de y em ordem a x.

1061 — Dados os dois planos $\alpha x + \beta y + \gamma z = 0$ e $(\gamma - \beta) x + (\alpha - \gamma) y + (\alpha - 7\beta) z + 4\alpha - 8\beta - 2\gamma = 0$, determinar os coeficientes α , β , γ de modo que estes planos sejam paralelos. Achar-se-ão três soluções, os planos correspondentes, dois a dois paralelos formam um paralelipípedo. Achar o volume dêste paralelipípedo. R: Os dois planos serão paralelos se

$$\frac{\alpha}{\gamma-\beta} = \frac{\beta}{\alpha-\gamma} = \frac{\gamma}{\alpha-7\beta} = \lambda \quad \text{donde} \quad \begin{cases} \alpha+\lambda\beta-\lambda\gamma = 0 \\ \lambda\alpha-\beta-\lambda\gamma = 0 \\ \lambda\alpha-7\lambda\beta-\gamma = 0 \end{cases}$$

sistema homogéneo que admitirá soluções não nulas se

$$\begin{vmatrix} 1 & \lambda & -\lambda \\ \lambda & -1 & -\lambda \\ \lambda & -7\lambda & -1 \end{vmatrix} = 0 \quad ou \qquad 6\lambda^3 - 7\lambda^2 + 1 = 0$$

$$\begin{vmatrix} \lambda & -1 & -\lambda \\ \lambda & -7\lambda & -1 \end{vmatrix} \qquad donde \quad \lambda = -1/3, 1/2, 1.$$

Para cada um dos valores do parâmetro \(\lambda\) o sistema fornece, por exemplo,

z=1,3,1 $\beta=-2,-1,0$ $\gamma=-5,5,1$ e as equações dos três pares de planos paralelos são x-2y-5z=0 3x-y+5z=0 x+z=0x-2y-5z=10 3x-y+5z=-15 x+z=-2.

Os pontos (0,0,0), (-15/13,-45/13,15/13), (25/13,10/13,-25/13), (-15/13,-20/13,-11/13) são os vértices do paralelipipedo pertencentes a três arestas concorrentes em (0,0,0). Então o volume do paralelipipedo é

$$V = \begin{vmatrix}
0 & 0 & 0 & 1 \\
-1 & -3 & 1 & 13/15 \\
5 & 2 & -5 & 13/15 \\
-15 & -20 & -11 & 13
\end{vmatrix} \times \left(\frac{15}{13}\right)^2 \cdot \frac{1}{13} = \frac{338 \times 15^3}{13^3}.$$

1062 – Calcular as raízes racionais da equação $3x^3-5x^4-11x^3+27x^2-20x-10=0$. R: A equação admite uma única raiz racional -1/3. Das restantes raízes, uma é irracional negativa e as outras três ou são irracionais positivas ou duas são complexas e uma irracional positiva.

Contêm pontos de exames finais de Álgebra Superior, os seguintes números da «Gazeta de Matemática»: 4 e 7.

I. S. T. — 2.ºs exames de freqüência — Alguns pontos

1063 — Achar a equação da esfera que é tangente ao plano xOy no ponto (2,4,0) e passa pelo ponto P(0,0,4). R: A equação geral das esferas tangentes ao plano xOy no ponto (2,4,0) è $(x-2)^2+(y-4)^2+(z-v)^2=r^2$ onde r è o raio. Se a esfera passa pelo ponto P(0,0,4), as coordenadas de P satisfarão à sua equação, isto é, $4+16+(4-r)^2=r^2$ donde r=9/2 e a equação da esfera è $(x-2)^2+(y-4)^2+(z-9/2)^2=81/4$.

1064 — Dado o ponto A(2,4) e a recta y=x-3, determinar sobre esta recta dois pontos $B \in C$ tais que o triângulo ABC seja rectângulo em A e isósceles. Fazer a representação gráfica. R: Determinemos a intersecção da recta y=x-3 com a perpendicular baixada de A sobre ela:

$$\left\{ \begin{array}{l} {\bf y}\!=\!{\bf x}\!-\!3 \\ {\bf y}\!-\!4\!=\!2\!-\!{\bf x} \end{array} \right. \left\{ \begin{array}{l} {\bf x}\!=\!9/2 \\ {\bf y}\!=\!3/2 \end{array} \right. .$$

Calculemos a distância do ponto A à recta y=x-3;

$$|d| = \left| \frac{2-4-3}{\sqrt{1+1}} \right| = \frac{5}{\sqrt{2}}.$$

Os pontos B e C são as intersecções da circunferência de centro em (9/2,3/2) e raio igual a $5/\sqrt{2}$,

com a recta dada, isto é:

$$\left\{ \begin{array}{l} y = x - 3 \\ (x - 9/2)^2 + (y - 3/2)^2 = 25/2 \end{array} \right. \left. \left\{ \begin{array}{l} x = 7 \\ y = 4 \end{array} \right. \left\{ \begin{array}{l} x = 2 \\ y = -1 \end{array} \right.$$

1065 – Desenhar os lugares geométricos de equações a) $(x^2+y^2)^2=4$ b) $x^3-y^3=0$. R: a) A equação $(x^2+y^2)^2=4$ desdobra-se em duas das quais é o produto $x^2+y^2=2$ e $x^2+y^2=-2$. A primeira representa uma circunferência de centro na origem e de raio $\sqrt{2}$; a segunda uma circunferência de centro na origem e de raio $\sqrt{2}$ i. b) A equação $x^3-y^3=0$ decompõe-se em duas x-y=0, $x^2+xy+y^2=0$. A primeira representa a bissectriz dos quadrantes impares; a segunda é uma cónica género elipse que degenera nas rectas conjugadas $2x+(1\pm\sqrt{3}i)$ y=0.

Contêm pontos de segundos exames de freqüência de Álgebra Superior os seguintes números da «Gazeta de Matemática»: 2, 6 e 10.

Soluções dos n.68 1049 a 1065 de A. Sá da Costa.

CÁLCULO INFINITESIMAL - ANÁLISE SUPERIOR

F. C. P. - CALCULO - Exame final, Junho de 1941

1066 — Determinar as curvaturas principais das secções normais da superfície $x^3y^2+y^3+z^3-3y+1=0$ no ponto (0,1,1).

1067 — Integrar a equação

$$y' - \frac{x^4 + 4x^2 - 1}{x(x^4 - 1)}y = \frac{x(x^2 - 1)}{(x^2 + 1)^2 \operatorname{arc} \operatorname{tg} x}.$$

1068 — A linha (l) é representada pelas equações $\begin{cases} x = \varphi(x) \\ y = \psi(x) \end{cases}$ em que z é o ângulo que a tangente em M faz com ox. Escrever as expressões das coordenadas X e Y de um ponto P do plano situado sobre a normal em M a uma distância MP = a em que a é uma constante. Relacionar a diferencial dS do arco de curva (L), lugar dos pontos P, com ds; por integração relacionar os arcos $\widehat{P_0P}$ (P_0 ponto de (L) sobre ox) e \widehat{OM} supondo $x_0 = \frac{\pi}{2}$; e calcular o comprimento do arco P_0P em função de z supondo que (l) é a cicloide: $x = r(t - \sin t)$, $y = r(1 - \cos t)$.

F. C. P. — CÁLGULO — 2.º exame de frequência, Maio de 1941

Ponto n.º 2

1069 — Integrar a equação: $x^2 y'' + xy' + 4y =$ =32 cos (2 log x). log x. R: Fasendo a mudança
de variável independente x=e' vem. $\frac{d^2 y}{dt^2} + 4y =$

= 32t cos 2t ou $\frac{d^2y}{dt^2} + 4y = 32t = 16t (e^{2it} + e^{-2it})$. Integral geral da equação sem 2.º membro:

$$\begin{split} y = & C_1 \, sen \, 2t + C_2 \, cos \, 2t \, , \quad \textit{Integrals particulares:} \\ y_1 = & 16 \, \frac{t}{(D+2i)^2 + 4} \cdot e^{2it} = \left(- \, 2it^2 + t + \frac{i}{4} \right) \, e^{2it} \, e \\ y_2 = & \left(2it^2 + t - \frac{i}{4} \right) e^{-2it} \, . \quad \textit{Integral geral:} \end{split}$$

 $\begin{aligned} y &= C_1 sen 2t + C_2 cos 2t + 4t^2 sen 2t + 2t cos 2t - \frac{1}{2} sen 2t. \\ &Integral \ geral \ da \ equação \ dada: \ y &= C_1 sen 2(\log x) + \\ &+ C_2 cos \ 2(\log x) + 4(\log x)^2 sen \ 2(\log x) + \\ &+ 2(\log x) cos \ 2(\log x) - \frac{1}{2} sen \ 2(\log x) \ . \end{aligned}$

1070 — Calcular
$$\iint \frac{dx \, dy}{xy}$$
. O domínio D si-

tuado no 1.º quadrante é limitado pelas linhas $x^2+y^2=1$; $x^2+y^2=4$; y=x e $y=\sqrt{3}x$. R: Calculemos o integral em coordenadas polares:

$$y \int \int \frac{2\rho \, d\rho \, d\theta}{\rho^2 \sin 2\theta} = 2 \int \frac{\pi/3}{\sin 2\theta} \int \frac{d\theta}{\rho} \int \frac{1}{\rho} \frac{d\rho}{\rho} = \frac{1}{2} \cdot \log 2 \cdot \log 3.$$

1071 — Determinar as curvaturas principais da superfície $2xy+x^3-y^3+\log(z+1)=0$, no ponto (0,0,0). R: Cálculo de p,q,r,s,t.

$$\left\{ \begin{array}{l} 2y + 3x^2 + p \, \frac{1}{z+1} = 0 \\ 2x - 3y^2 + q \, \frac{1}{z+1} = 0 \end{array} \right. \left. \begin{array}{l} p = 0 \\ q = 0 \end{array} , \right.$$

$$\begin{split} 6x &- \frac{p^2}{(z+1)^2} + \frac{r}{z+1} = 0 \;, \quad 2 - \frac{pq}{(z+1)^2} + \frac{s}{z+1} = 0 \;, \\ &- 6y + \frac{q^2}{(z+1)^2} + \frac{t}{z+1} = 0 \;. \quad \textit{No ponto} \quad (0 \;, 0 \;, 0) \\ \textit{temos} \; : \; r = 0 \;, \; s = -2 \;, \; t = 0 \;. \quad \textit{Equação de condição} \;: \\ sm^2 + (r - t) \; m - s = 0 \;, \quad -2m^2 + 2 = 0 \;. \; m = \pm 1 \;. \\ C_n &= \frac{r + 2sm + tm^2}{1 + m^2} = \frac{-4m}{1 + m^2} \;. \quad C_1 = -2 \;, \quad C_2 = 2 \;. \end{split}$$

1072 — Determinar a equação cartesiana da linha (L) tal que a distância de M ao centro da curvatura C_1 da evoluta seja igual ao quadrado do raio da curvatura de (L) em M.

As constantes de integração devem considerar-se nulas. R: Equação de condição: $\overline{C_1M} = R^2$. Sendo C o centro de curvatura em M, tem-se:

Soluções dos números 1066 a 1072 de Jaime Rios de Sousa.

Contêm pontos de exames finais de Cálculo Infinitesimal e de Análise Superior os seguintes números da «Gazeta de Mátemática»: 4, 7, 8 e 9.

MECÂNICA RACIONAL - FÍSICA MATEMÁTICA

F. C. L.—MECÂNICA—2.º exame de frequência, I-II-1941

1073 — Um ponto material, de massa unidade, está submetido à acção da força: $\mathbf{F} = x(\mathbf{e}_1 + \mathbf{e}_2)$. Determinar o seu movimento nas seguintes condições iniciais: $P_0(0,0)$ $\mathbf{v}_0 = 2\mathbf{e}_1 + 2\mathbf{e}_2$. Determinar o trabalho efectuado pelo campo, quando o ponto se desloca desde $P_0(0,0)$ a $P_1(3,3)$ no seu movimento. R:

1)
$$x^{ij}=x$$
, $y^{ij}=x$.
 \acute{E} então: $y^{ij}=x^{ij}$; $logo$:

2)
$$y=x+C_1t+C_2$$
.

Da 1.ª equação 1) vem:

$$\mathbf{x}^{\prime\prime}\mathbf{-x}=\mathbf{0}$$

equação diferencial linear de coeficientes constantes, cujo integral geral \dot{e} $x=C_3\,e^t+C_4\,e^{-t}$ e atendendo a 2) $y=C_3e^t+C_4e^{-t}+C_1t+C_2$. Temos então:

4)
$$\begin{cases} x = C_3 e^t + C_4 e^{-t} \\ y = C_3 e^t + C_4 e^{-t} + C_1 t + C_2 \end{cases}$$

e derivando

5)
$$\begin{cases} x' = C_3 e^t - C_4 e^- \\ y' = C_3 e^t - C_4 e^{-t} + C_1. \end{cases}$$

Como – condições iniciais – para t=0, é: x=0 y=0 x'=2 y'=2 vem, introdusindo estes valores em 4) e 5): $0=C_3+C_4$, $0=C_3+C_4+C_2$, $2=C_3-C_4$, $2=C_3-C_4+C_1$, ou seja: $C_3=1$, $C_4=-1$, $C_1=0$ e $C_2=0$. O movimento do ponto, nas condições iniciais dadas, é $x=e^t-e^{-t}$ $y=e^t-e^{-t}$ e efectua-se ao longo da recta y=x, afastando-se o ponto indefinidamente para o lado direito desta. O campo de forças dado não deriva dum poten-

cial, visto que: $\frac{\delta X}{\delta y} \neq \frac{\delta Y}{\delta x}$. Para calcular o trabalho pedido temos então que integrar \mathbf{F} . dP = X dx + Y dy ao longo da trajectória do ponto. Teremos $\mathbf{F} = \int_{\widehat{P_0 P}} \mathbf{x} dx + \mathbf{y} d\mathbf{y}$ e como $\mathbf{y} = \mathbf{x}$ ao longo dessa

trajectòria, tem-se:
$$=\int_{0}^{3} 2x \, dx = 9$$
.

1074 — Uma área plana e homogênea, é constituída por um quadrado de lado 2a, encimado por uma semi-elipse de semi-eixos a e b. Determinar b de modo que o centro de gravidade da área considerada esteja sóbre o lado do quadrado que é eixo da semi-elipse. R: O centro de gravidade do quadrado encontra-se no centro déste. Calculemos a posição do centro de gravidade da semi-elipse. Para referir esta posição, tomemos um sistema de 2 eixos ortogonais com origem no centro da elipse, e dirigidos segundo os eixos desta. As coordenadas do centro de gravidade da semi-elipse,

$$serāo \quad \xi = 0 \quad \pi = \frac{\iint y \, dx \, dy}{\iint dx \, dy} \quad onde$$

$$\iint dx \, dy = \text{area da semi-elipse} = \pi \, ab/2 . \quad Tem-se$$

$$\iint y \, dx \, dy = \int_{-a}^{+a} dx \int_{0}^{b} y \, dy = \frac{1}{2} \frac{b^2}{a^2} \int_{-a}^{+a} (a^2 - x^2) dx =$$

$$= \frac{2ab^2}{3} \quad e, \text{ portanto}, \quad \pi = \frac{2ab^2/3}{\pi ab/2} = \frac{4}{3} \frac{b}{\pi}.$$

Tomemos agora um sistema de eixos paralelos aos anteriores, mas cuja origem se encontre no centro do quadrado, e chamemos: F à figura dada, F_1 ao quadrado e F_2 à semi-elipse.

Designemos ainda por A_k a área de F_k e por ξ_k e η_k , respectivamente, a abcissa e ordenada — relativas aos novos eixos — de F_k . Temos $A_1 = 4a^2$ $A_2 = \pi ab/2$ $A = A_1 + A_2 = a (4a + \pi b/2)$ $\xi_1 = 0$ $\eta_1 = 0$ $\xi_2 = 0$ $y_2 = \frac{4}{3} \frac{b}{\pi} + a$. De $\xi_1 = 0$ $\xi_2 = 0$ con-

clue-se que n virá dado por: $A_n = A_1 n_1 + A_2 n_2$, ou seja: $na\left(4a + \frac{\pi}{2}b\right) = \frac{\pi}{2}ab\left(\frac{4}{3}\frac{b}{\pi} + a\right)$. Como deve ser n = a, tem-se:

$$4a^3 + \frac{\pi}{2}a^2b = \frac{2}{3}ab^2 + \frac{\pi}{2}a^2b$$
 ou $b = a\sqrt{6}$.

Soluções dos exercícios 1073 e 1074 de F. V. A. de Veiga de Oliveira,

Contêm pontos de segundos exames de freqüência de Mecânica Racional e Fisica Matemática os seguintes números da «Gazeta de Matemática»: 2, 6 e 10.

CÁLCULO DAS PROBABILIDADES

F. C. P. - Exame final, 14-10-1941

1075 — Um ponto P é lançado ao acaso no quadrado OABC (10 cm de lado). Seja P(x, y) a posição obtida, e σ a área do quadrilátero tracejado, obtido unindo P com A e C.

jado, obtido unindo P com A e C. σ pode exprimir-se em função de x e y.

a) Indicar o domínio certo N_σ.
 R: a) Manifestamente é o intervalo (0.100).

b) Calcular a probabilidade de ser $\sigma < 20 \text{ cm}^2$. R: b) De $\sigma = 5 (x+y) < 20$ resulta x+y < 4. P terá caido no triángulo limitado pelos eixos e pela recta x+y=4, de área $1/2 \cdot 4 \cdot 4 = 8 \text{ cm}^2$ e a probabilidade será p=0.08.

- c) O valor médio $M(\sigma)$. R: c) $M(\sigma)=5 M(x)+5 M(y)=10 M(x)=50$, pois $M(x)=M(y)=5 (T_x=T_y=1/10)$.
- d) A taxa T_{σ} . R: d) Poderá calcular-se efectuando a mudança de variáveis definida pelas relações $\begin{cases} x=x \\ \sigma=5(x+y) \end{cases}$. Obtemos $T_{x\sigma}=\frac{1}{500}$ donde
- $T_{\sigma} = \frac{Nx : \sigma}{500} \cdot A taxa terá duas expressões analíticas:$

$$T_{\sigma} = \frac{\sigma}{2500} \text{ se } 0 \ge \sigma \le 50; \ T_{\sigma} = \frac{100 - \sigma}{2500} \text{ se } 50' \ge \sigma \le 100.$$

e) Verificar. R: e) Por exemplo: utilisando T_{σ} efectuar os cálculos das alineas b) e c).

Observ. — A notação é a de Van Deuren. Solução do n.º 1075 de M. Gonçalves Miranda.

PROBLEMAS PROPOSTOS

A secção de problemas da «Gazeta de Matemática» só pode ser uma secção realmente viva na medida em que for feita pelos leitores. Por isso se pede a todos os leitores que proponham problemas, (acompanhados ou não de solução), que enviem soluções dos problemas propostos, e sobretudo que digam com toda a franqueza aquilo que lhes agrada e aquilo que lhes não agrada.

A redacção receberá com tôda a atenção as sugestões que lhe forem feitas de alterações ou ampliações.

Temos a certeza de que muito há a esperar da boa vontade dos leitores, mas o certo é que até hoje, tendo a «Gazeta» centenas de leitores, apenas meia dúzia tem enviado problemas ou soluções. Na esperança de que o seu exemplo seja largamente seguido, publicamos aqui os seus nomes (pedindo desculpa de qualquer involuntária omissão): Problemas — Um estudante de matemáticas (Pôrto); T. Ferreira Rato (Cabo Verde).

Soluções — José Arandes; Emídio de Oliveira; J. S. Faria de Abreu. M. Alenquer

1076 — Num rectângulo OAMB é $\overline{OA}=a$ e $\overline{OB}=b$. Por M faz-se passar uma recta que corta os prolongamentos de OA e OB, respectivamente, em P e Q. Sendo a o ângulo \widehat{OPQ} , mostrar que é:

$$\overline{PQ} = (a^{2/3} + b^{2/3})^{3/2}$$
 quando for: $tg^3 \alpha = b/a$.

1077 — Eliminar φ entre as equações $\begin{cases}
x = 3 \cos \varphi + \cos 3\varphi \\
y = 3 \sec \varphi - \sec 3\varphi
\end{cases}$

1078 — Eliminar x entre às equações $\begin{cases} sen x + tg x = a \\ sen x \cdot tg x = b \end{cases}$