e $Q = \frac{9a^2 - 5b^2}{4b^2}$. Euler simplifica esta aplicação e os cálculos utilizando um corolário do seu lema e encontra, por exemplo, para a = 2 e b = 1, x = 202, y = 377/2 e s = 619/2.

O método consiste aqui na introdução de parâmetros e na determinação de x, y, z, p, q, r como funções racionais dêstes parâmetros capazes de se substuïrem às equações fundamentais. É êste método aplicado por Euler sistemáticamente e magistralmente (na opinião do professor Fueter, um dos prefaciadores da edição das obras

completas de Euler) a tôda uma série de problemas que parece terem sido demasiadamente esquecidos e deverem retomar-se dum ponto de vista moderno pelos matemáticos da nova geração.

Quanto a indicações bibliográficas para êste problema do triângulo só posso dar, além das obras completas de Euler, especialmente os III e V vols. da série 1.ª, um artigo, que não li, de P. V. Schaewen, «Dreiecke mit rationalen Seiten und rationalen Seitenhalbrèrenden», na revista «Zeitschrift für die Realschulwesen», 40, 1915, pág. 145.

Duas demonstrações de um mesmo facto

por J. Albuquerque

(Bolseiro em Roma do Instituto para a Alta Cultura)

Seja y=f(x) uma função real de variável real definida num intervalo (a,b) extremos incluídos. Vamos demonstrar o seguinte importante teorema:

Teorema 1. Se f(x) é continua no intervalo (a,b) extremos incluidos, e nos extremos do intervalo toma valores não nulos de sinais contrários, então f(x) anula-se, pelo menos num ponto interior ao intervalo.

Por hipótese f(x) é contínua relativamente ao intervalo (a,b), num dos extremos, por exemplo em a. Isto significa que se tomarmos uma vizinhança $V_{f(a)}$ do ponto f(a), existirá uma vizinhança V_a do ponto a, tal que: $f[V_a \cdot (a,b)] \subset V_{f(a)}$.

Supondo-se $f(a) \neq 0$, existe sempre, entre os números f(a) e zero, outro número real com o sinal de f(a). Consideremos então as vizinhanças $V_{f(a)}$ que são os intervalos [f(a)-k,f(a)+k], extremos incluídos, onde 0 < k < |f(a)|.

A cada uma dessas vizinhanças corresponde, devido à continuïdade de f no ponto a, uma vizinhança V_a do ponto a, tal que: $f[V_a \cdot (a,b)] \subset V_{f(a)}$, isto é, tal que se $x \in V_a \cdot (a,b)$ então f(x) tem o sinal de f(a).

O conjunto $V_a \cdot (a, b)$ é um intervalo (a, a+h) extremos incluídos, podendo ser h>0 se for a< b, ou então h<0 se for a>b.

A continuïdade de f(x) em a, assegura-nos a existência de um intervalo (a, a+h) tal que se $x \in (a, a+h)$ extremos incluídos, será f(x) do sinal de f(a).

Consideremos todos os intervalos (a, a+h) de comprimento |h| que gosam da propriedade indicada.

Temos $(a, a+h) = V_a$ $(a, b) \subset (a, b)$ e portanto o intervalo (a, a+h) é formado só de pontos do intervalo (a, b). Como f(b) é de sinal contrário ao de f(a), todos os intervalos (a, a+h) têm o extrêmo a+h, interior a(a, b).

O comprimento |h| destes intervalos admite um limite superior que representaremos por $|\xi|$ e que será o comprimento do intervalo $(a, a+\xi)$, intervalo limite da família de intervalos (a, a+h). O intervalo $(a, a+\xi)$ está contido no intervalo (a, b); o ponto $a+\xi$, à primeira vista poderá coïncidir com o ponto b: veremos já a seguir que não.

É neste momento que intervém a hipótese da continuïdade da função f(x) noutros pontos de (a,b) além do ponto a. Para prosseguir a demonstração é necessário que a função seja contínua no ponto $a+\xi$.

Com efeito, se a função é contínua no ponto $a+\xi$, sendo $a+\xi$ um ponto de acumulação do conjunto de pontos a+h, para cada vizinhança $V_{f(a+\xi)}$ do ponto $f(a+\xi)$ pode determinar-se uma vizinhança $V_{a+\xi}$ do ponto $a+\xi$, tal que: $f[V_{a+\xi}\cdot(a,b)]\subset V_{f(a+\xi)}$.

Isto significa que se $a+\xi$ é ponto de acumulação do conjunto de pontos a+h, então $f(a+\xi)$ será ponto de acumulação do conjunto de pontos f(a+h). Conclui-se portanto que $f(a+\xi)$ terá o

sinal de f(a+h) e portanto o sinal de f(a). Como f(b) tem o sinal contrário necessariamente $a+\xi$ é um ponto interior ao intervalo (a,b).

Suposemos que f era contínua em $a \in a+\xi$, fomos levados a concluir que a+\xi \xi interior a (a, b). Suponhamos que a função era só continua nos pontos interiores ao intervalo (a, b) e no extrêmo a: neste caso o ponto a+ \xi poderia coïncidir com b, e não sendo a função contínua nesse ponto já nada obrigava $f(a+\xi)$ a ser ponto de acumulação do conjunto de pontos f(a+h), nada obrigaria pois $f(a+\xi)$ a ter o sinal de f(a); seria portanto $f(a+\xi)=f(b)$ e a função poderia não se anular em nenhum ponto de (a,b). Vê-se pois que é imprescindível que a função seja contínua no ponto b, e a continuïdade de f(x) no ponto b, é implicitamente estabelecida quando se supõe a continuïdade no ponto a+ξ, a-pesar-de se concluir logo em seguida que $a+\xi$ é interior a (a,b)

Então $f(a+\xi)$ tem o sinal de f(a) e $a+\xi$ è interior ao intervalo (a,b).

Consideremos agora um ponto x_1 situado entre $a+\xi$ e o ponto b. No intervalo $(a+\xi,x_1)$ existe sempre um ponto onde a função tem o sinal de f(b), porque no caso contrário $|\xi|$ não seria limite superior de |h|. Então qualquer vizinhança do ponto $a+\xi$ possui um ponto onde a função toma o sinal de f(b); $a+\xi$ é ponto de acumulação de um conjunto de pontos em cada um dos quais a função f tem o sinal de f(b).

Intervém de novo a continuïdade de f no ponto $a+\xi$, e de um modo análogo ao de há pouco, $f(a+\xi)$ é ponto de acumulação de um conjunto de pontos em cado um dos quais a função f toma o sinal de f(b). Portanto $f(a+\xi)$ tem o sinal de f(b), tal como já tinha o sinal de f(a).

Conclui-se então que é necessariamente $f(a+\xi)=0$, c. q. d.

Do teorema anterior conclui-se imediatamente o seguinte:

Teorema 2. Se f(x) è continua no intervalo (a,b) extremos incluidos, e nos extremos do intervalo toma valores desiguais $[f(a) \neq f(b)]$, então f(x), pelo menos num ponto interior ao intervalo, toma qualquer valor k compreendido entre f(a) e f(b).

Para provar este teorema como consequência do anterior, basta notar que a função F(x)=f(x)-k, está nas condições exigidas no teorema 1.

Vamos mostrar que êste último teorema e, consequentemente, o teorema 1, estão intimamente ligados às propriedades de conexão do conjunto de pontos de um intervalo. Para isso ponhamos a seguinte importante definição:

Definição 1. Um conjunto E de pontos dis-se conexo se, qualquer que fór a sua decomposição em dois conjuntos não vasios e disjuntos, um pelo menos dêsses dois conjuntos tem um ponto de acumulação do outro.

Representando por X' o conjunto dos pontos de acumulação de um conjunto X, ou como também se diz o derivado de X, podemos afirmar que um conjunto E será conexo quando para tôda a decomposição do tipo:

(1) E=A+B, $A\neq 0$, $B\neq 0$, $A\cdot B=0$, for sempre verificada a relação

$$(2) A \cdot B' + A' \cdot B \neq 0.$$

Esta última fórmula diz-dos que: ou $A \cdot B' \neq 0$ e então em A existe um ponto ao menos de B' e portanto um ponto de acumulação de B; ou $A' \cdot B \neq 0$ e então em B existe um ponto ao menos de A' e portanto um ponto de acumulação de A; ou $A \cdot B' \neq 0$ e $A' \cdot B \neq 0$ e os dois casos apresentam-se simultâneamente.

Vamos demonstrar que: um intervalo (a,b) é um conjunto conexo (1).

Para isso consideremos uma decomposição arbirária do tipo (1):

$$(a,b)=A+B, A \neq 0, B \neq 0, A \cdot B=0.$$

Por ser $A \cdot B = 0$, o ponto b pertence necessàriamente a um e só um dos dois conjuntos A e B; suponhamos que se tem b e B.

O conjunto A está contido no intervalo (a, b), é pois limitado e tem um limite superior p.

Se p=a, caso em que A se reduz ao ponto a, p é um ponto de acumulação de B, logo $A \cdot B' \neq 0$. Se $p\neq a$ e p=b, caso em que B se reduz ao ponto b, p é um ponto de acumulação de A, logo $A \cdot B' \neq 0$.

Se $p \neq a$ e $p \neq b$, p é um ponto interior ao intervalo (a, b), e por ser limite superior de A, é um ponto de acumulação de A, e pela mesma razão ainda, qualquer vizinhança de p tem à

⁽¹⁾ O leitor pode omitir a demonstração dêste resultado que é deveras natural. Mas se o leitor tiver a ânsia de problemas, poderá, ao contrário, estudar a fundo a mesma demonstração e procurar, por exemplo, demonstrar esta proposição mais geral: todo o intervalo n-dimensional é um conjunto conexo.

Isso permitir-lhe-ia de um golpe, generalizar aos espaços a um número qualquer de dimensões inteiras, o teorema 2, que se vai demonstrar mais adiante.

direita de p um ponto de B, logo p será também ponto de acumulação de B, e portanto temos: $p \in A' \cdot B' \neq 0$.

Mas sendo $A \cdot B = 0$, necessàriamente ou é $p \in A$, ou é $p \in B$. Se $p \in A$, como é também $p \in A' \cdot B' \subset B'$, teremos: $A \cdot B' \neq 0$; se $p \in B$, como é também $p \in A' \cdot B' \subset A'$, teremos: $A' \cdot B \neq 0$.

Em todos os casos possíveis se tem para a decomposição arbitrária que considerámos, a relação (2): $A \cdot B' + A' \cdot B \neq 0$.

Em virtude da definição 1, podemos concluir que o intervalo (a,b) é um conjunto conexo. c,a,d.

Para finalmente pôr em relêvo as relações entre o conteúdo do teorema 2, ou do teorema 1, e as propriedades de conexão do conjunto de pontos de um intervalo, demonstremos o teorema 2, seguindo uma nova ordem de idéas.

Consideremos então uma função f(x) contínua nos pontos do intervalo (a,b) e suponhamos que $[f(a) \neq f(b)]$. Seja k um número real compreendido entre f(a) e f(b), e suponhamos que a função não tomava o valor k em nenhum ponto do intervalo (a,b).

Designemos por A o conjunto dos pontos $x \in (a, b)$ tais que f(x) < k, e designemos por B o conjunto dos pontos $x \in (a, b)$ tais que f(x) > k. Será evidentemente:

$$(a,b)=A+B$$
, $A\cdot B=0$,

e como o ponto a pertence a um dos dois conjuntos e o ponto b certamente pertence ao outro, será:

$$A \neq 0, B \neq 0.$$

Tomemos um ponto x_0 pertencente a A, sendo por definição $f(x_0) < k$. Ponhamos

$$\varepsilon = k - f(x_0), \quad \varepsilon \neq 0.$$

Como a função f(x) é por hipótese contínua nos pontos do intervalo e como $x_0 \in A \subset (a,b)$, a função é contínua em x_0 , e então, àquele valor de $\epsilon > 0$, bem determinado para o ponto x_0 , corresponderá uma vizinhança V_{x_0} do ponto x_0 , tal que para cada ponto $x \in V_{x_0}$. (a,b) se tem

$$|f(x)-f(x_0)|<\varepsilon$$

o que dá devido ao valor de a

$$f(x) < k$$
.

Portanto todos os pontos de $V_{x_0} \cdot (a, b)$ pertencem ao conjunto A e o ponto x_0 , qualquer que êle seja, não é ponto de acumulação de B. Tem-se pois $A \cdot B' = 0$. Um raciocínio análogo daria $A' \cdot B = 0$. O intervalo (a, b) não seria um conjunto conexo, e a contradição resulta de se ter

admitido que f(x) não assumia em (a,b) o valor k. O teorema encontra-se demonstrado.

Nesta demostração se vê dum modo claro que: para a função f(x) assumir o valor k compreendido entre f(a) e f(b) é essencial que o conjunto dos pontos do intervalo (a,b) seja conexo.

É essencial mas não é nisso que reside tôda a essência do facto: o leitor que medite no papel não menos essencial desempenhado pela continuïdade da função.

É evidente que o teorema 2, arrasta como consequência o teorema 1, e tinhamos visto que o teorema 1 implicava o teorema 2. Demonstrámos de duas maneiras um mesmo facto pois os dois teoremas são lògicamente equivalentes.

Pois bem: na demonstração que demos do teorema 1, ressalta tôda a importância da continuïdade da função.

O conceito de intervalo é complicadíssimo, mas não inextricável: das imensas propriedades topológicas do conjunto de pontos de um intervalo foi-se buscar uma, aquela que intervém decisivamente no facto analisado. Seria um exercício útil para um estudante de matemática decompor o conceito de continuïdade procurando dentro dêle aquela ou aquelas propriedades que jogam na demonstração.

Pode evidentemente dar-se o caso de ser o conceito de continuïdade, todo inteiro, a intervir (1). Sòmente um hábito de meditação e uma técnica de análise poderá levar um estudante a pronunciar-se sôbre êste ou outros factos semelhantes-

Todo o estudante de matemática numa escola superior deveria ser orientado pelos seus mestres neste caminho. Para isso é indispensável que o mestre possua o habito da reflexão e a técnica própria da análise que somente lhe poderão vir das suas continuadas e prolongadas investigações.

Outro qualquer método de estudo, adoptado por estudantes de matemática e consentido por mestres e metodólogos, diferente dêste que se apontou, poderá conduzir o aluno, no final do ano ou nas proximídades de um exame, a saber (?) hipóteses e teses, a conhecer mesmo até, quando tal lhe seja exigido, técnicas de demonstração, mas todos esses conhecimentos serão à superfície da pele, e não terão penetrado profundamente no ser.

Em matemática ou em qualquer outro ramo do saber, mais valioso do que saber, é... saber reflectir.

⁽¹⁾ Para o avaliar, poderia estudar-se o comportamento nas mesmas circunstâncias das funções, semi-continuas, uniformemente contínuas e aproximadamente contínuas.