Uma interpretação da análise combinatória e algumas aplicações

por J. M. Gil

1 — Reordenações dum conjunto — Permutações — Funções biunívocas

Qualquer disposição linear de n objectos distintos chama-se uma permutação linear desses objectos. Cada permutação é assim uma reordenação dos elementos do conjunto dos n objectos, ou, mais simplesmente, uma ordenação do conjunto dos n objectos.

2 — Quando a cada elemento x do conjunto X se faz corresponder um só objecto $\varphi(x)$ dum conjunto Y, de modo que todos os elementos de Y sejam utilizados, diz se que a correspondência φ é uma aplicação de X sobre Y.

Pois bem, cada permutação linear dos nobjectos do conjunto X define, aritmèticamente, com uma ordenação inicial de X, uma aplicação biunívoca de X sobre X. A posição ordinal é aqui a regra pela qual se estabelece a correspondência entre as duas ordenações de X.

O conjunto finito X, numa ordenação inicial, é aplicável biunlvocamente, mediante a posição ordinal dos elementos, sobre cada uma das permutações lineares dos n objectos do conjunto.

Cada aplicação biunívoca de X sobre X designa-se por permutação do conjunto X.

Uma disposição linear de n objectos pode assim ser encarada duplamente: — como permutação dos n objectos — reordenação do conjunto deles; como permutação do conjunto dos n objectos — definição da

correspondência biunívoca entre os n objectos nuwa posição de referência e na posição indicada.

3 - A aplicação biunívoca, $\varphi(x)$, de X sobre X também se diz uma função φ , definida em X, e de valores em X.

Cada permutação linear dos elementos de X, finito, constitui o conjunto dos valores duma função φ , definida em X e dispostos pela ordem em que φ os determina a partir da disposição inicial dos elementos de X.

4 - Número de permutações

Representemos por P_n o número das possíveis reordenações do conjunto $C = \{a_1, a_2, a_5, \cdots a_n\}$ de n elementos a_i . Consideremos a partição $C = C_1 + C_2$ com $C_2 = \{a_2, a_5, \cdots a_n\}$ e $C_1 = \{a_1\}$. Tomemos, por exemplo, a ordenação a_2, a_5, \cdots, a_n dos elementos de C_2 . O elemento a_1 colocado em primeiro lugar, em último lugar, ou entre dois daqueles elementos, dá origem, de cada vez, a uma reordenação dos elementos de C. Assim

O elemento a_1 pode ocupar n lugares, em cada reordenação dos elementos de C_2 ,

originando em cada posição uma reordenação dos elementos de C. Simbòlicamente

$$P_n = n \cdot P_{n-1}$$

5 - Ainda

 $P_{n+1} = (n+1)P_n$

0

$$P_{n+p} = \prod_{j=0}^{p-1} (n+p-j) P_n$$

Para n=0, e com $P_0=1$, vem

$$P_{p} = \prod_{j=0}^{p-1} (p-j)$$

$$= p(p-1)(p-2)\cdots 2 \times 1.$$

6 — Representaremos o número $P_n = n(n-1) \cdots 2 \times 1$ das permutações de n objectos por $n! = P_n$.

7—A formação de uma das reordenações de $C = \{a_1, a_2, \dots a_n\}$, ou uma das permutações dos n elementos do conjunto, consiste em escolher um dos elementos do conjunto C para o primeiro lugar, escolher um dos restantes n-1 elementos para o segundo lugar, escolher um dos restantes n-2 elementos para o terceiro lugar, e assim sucessivamente até ao lugar n-6simo.

A primeira escolha pode fazer-se de n maneiras diferentes, a segunda de n-1 maneiras diferentes, a terceira de n-2 maneiras diferentes, etc., e a última duma só maneira, porque resta apenas um elemento. Cada sucessão de n escolhas dá uma permutação dos n elementos. Todas as sucessões possíveis conduzem às n! permutações. Podemos interpretar este resultado duma maneira geral. Suponhamos que executamos sucessivamente, uma após outra, n operações, cada uma delas, depois da primeira, só possível após a execução da anterior, e, que a primeira tem m_1 resultados possíveis; a segunda m_2 ; a terceira m_5 ; etc. A exe-

cução da sucessão das n operações, em cada caso, conduz a um de

$$m_1 \times m_2 \times \cdots \times m_n$$

resultados diferentes.

8 — Para distribuir n objectos distintos por n caixas iguais, em linha, deixando um objecto em cada caixa, tenho de executar n operações sucessivas, que consistem em colocar um dos objectos numa das caixa disponíveis. Poderei escolher um dos n objectos para colocar na primeira caixa. A escolha conduz a n resultados possíveis e determina o conjunto em que farei a nova escolha. Para colocar na segunda caixa disponho de n-1 objectos, à escolha. Posso assim obter n-1 resultados diferentes nesta escolha. E assim sucessivamente até ao último objecto que será colocado na última caixa.

O número total de distribuições diferentes é

$$n(n-1)(n-2)\cdots\times 2\times 1=n!$$

9 — Permutações circulares — Ordenações cíclicas

Consideremos uma permutação dos n=4 objectos

$$a_1$$
 a_2 a_3 a_4 .

Escrevamos as permutações que se obtêm, conservando a posição relativa dos objectos nesta permutação, e começando no segundo, no terceiro, etc., no n-ésimo, completando a permutação com os elementos que antecedem o elemento inicial

$$a_2$$
 a_5 a_4 a_1 a_5 a_4 a_1 a_2 a_4 a_1 a_2 a_5

Estas permutações designam-se por permutações circulares de uma qualquer delas. Cada permutação inicial dá origem a n-1

permutações circulares, que com ela constituem uma classe de permutações circulares.

Em cada classe de permutações circulares é conservada a posição relativa dos elementos e diz-se que têm a mesma ordenação cíclica. A classe constitui assim uma permutação circular dos n elementos considerados.

O conjunto das P_n permutações de n elementos é assim dividido em $P_n/n = P_{n-1}$ classes de permutações circulares.

Também é P_{n-1} o número de ordenações cíclicas do conjunto dos n elementos, ou o númera das permutações circulares dos n objectos.

10 — Reordenações de C, com um subconjunto de ρ elementos iguais

Façamos $a_1 = a_2 = \cdots = a_p = b$ em todas as permutações dos n elementos de $C = \{a_1, a_2, \cdots, a_n\}$. Obtemos assim as permutações de n elementos, dos quais p são iguais. Seja $P_{n|p}$ o número destas permutações e $\overline{P}_{n|p}$ uma qualquer delas.

É $P_{n|p} < n!$, porque as permutações dos n elementos diferentes, em que, por exemplo, os elementos $a_1, a_2, \dots a_p$ figuram seguidos e permutados

$$\cdots a_1$$
 a_2 $a_3 \cdots a_p \cdots$
 $\cdots a_2$ a_1 $a_3 \cdots a_p \cdots$
 $\cdots a_5$ a_1 $a_2 \cdots a_p \cdots$

e os restantes n-p elementos conservam as respectivas posições, dão origem à mesma permutação com o elemento b repetido p vezes. Não nos interessam agora as permutações dos elementos que fizermos iguais a b, isto é, as permutações no agrupamento dos p elementos bb.

Se em cada uma das $\overline{P}_{n|p}$ fizermos um dos bb igual a a_p , obteremos uma das $\overline{P}_{n|p-1}$. Esta operação pode executar-se em

cada $\overline{P}_{n|p}$ de p maneiras diferentes — uma por cada $a_i = b = a_p$, com $i = 1, 2, \dots, p$.

Repetindo a operação em todas as $\overline{P}_{n|p}$, obteremos as $\overline{P}_{u|p-1}$, o que torna fácil a sua contagem. Assim

$$P_{n|p-1} = p \cdot P_{n|p}.$$

11 - Consequentemente

$$P_{n|p+1} = \frac{1}{p+1} P_{n|p}$$

0

$$P_{n|p+q} = \prod_{j=0}^{q-1} \frac{1}{p+q-j} P_{n|p}.$$

Fazendo p=0 e $P_{n|0}=P_{n|1}=P_n$, vem

$$P_{n|q} = \prod_{j=0}^{q-1} \frac{1}{q-j} P_n$$

$$= \frac{P_n}{P_q} = \frac{n!}{q!}$$

com $p \leq n$.

12 — As permutações de n elementos, dos quais n-1 iguais, são da forma

Ponhamos índices nos bb a partir do c para direita e continuemos a numeração, à esquerda, com o índice a seguir ao último da direita. Façamos ainda $c = b_n$. Obtemos as permutações

que são as permutações circulares de uma

das permutações de n objectos. Como cada uma delas foi obtida de uma das $\overline{P}_{n|n-1}$, temos que o seu número é $P_{n|n-1} = n$.

Quando se lêem as permutações de baixo para cima vê-se que cada uma se obtém da anterior adicionando uma unidade a cada índice e fazendo n+1=1, ou trocando cada elemento com o seguinte.

13 - Arranjos de n elementos

Digo que escolho ordenadamente n-p elementos dum conjunto $C = \{a_1, a_2, \cdots a_n\}$ de n elementos, quando designo alguma das reordenações dum subconjunto de n-p elementos.

Cada escolha ordenada de n-p elementos também se diz um arranjo dos n elementos, n-p a n-p. Representaremos cada um dos arranjos por $\overline{A}_{n|n-p}$ e o número deles por $A_{n|n-p}$.

Consideremos as permutações de n elementos, dos quais p são iguais a b. Para cada uma destas permutações, excluamos em C os elementos que ocupam a posição dos bb, na ordem $1, 2, \dots, n$. A cada uma destas permutações fica assim a corresponder uma escolha ordenada de n-p elementos do conjunto C. Temos consequentemente $P_{n|p} = A_{n|n-p}$ e, fazendo n-p=q,

$$A_{n|q} = P_{n|n-q} = \frac{n!}{(n-q)!}$$

com $q \leq n$.

14 — Relações de recorrência nos índices de Pale

Vimos que é

$$P_{n|p} = \frac{1}{p} \cdot P_{n|p-1}.$$

Anàlogamente

$$P_{n|p} = \frac{n!}{p!} = n \cdot \frac{(n-1)!}{p!} = n \cdot P_{n-1|p}$$

e ainda

$$P_{n|p} = \frac{n!}{p!} = \frac{n}{p} \cdot \frac{(n-1)!}{(p-1)!} = \frac{n}{p} \cdot P_{n-1|p-1}$$
ou
$$P_{n|p} = \frac{n}{p} P_{n-1|p-1} = \left(1 + \frac{n-p}{p}\right) P_{n-1|p-1}$$

$$= P_{n-1|p-1} + \frac{n-p}{p} P_{n-1|p-1}$$

$$= P_{n-1|p-1} + (n-p) P_{n-1|p}$$

15 — $P_{n|p}$ pode ainda decompor-se num maior número de parcelas por aplicação sucessiva de $P_{n|p} = P_{n-1|p-1} + P_{n-p|n-p-1} P_{n-1|p}$. Assim

 $= P_{n-1|p-1} + P_{n-p|n-p-1} P_{n-1|p}$

$$P_{n|p} = P_{n-1|p-1} + P_{n-p|n-p-1} P_{n-2|p-1} + P_{n-p|n-p-1} P_{n-2|p} + P_{n-p|n-p-1} P_{n-p-1|n-p-2} P_{n-2|p}$$

$$= P_{n-1|p-1} + \sum_{j=1}^{n-p} P_{n-p|n-p-j} P_{n-(j+1)|p-1}$$

$$= P_{n-p|n-p} P_{n-1|p-1} + \sum_{j=1}^{n-p} P_{n-p|n-p-j} P_{n-(j+1)|p-1}$$

$$= \sum_{j=0}^{n-p} P_{n-p|(n-p)-j} P_{n-(j+1)|p-1}$$

anàlogamente

$$P_{n|p} = P_{n-p|n-p-1} P_{n-1|p} + P_{n-p|n-p-1} P_{n-2|p-1} + P_{n-2|p-2} + P_{n-p|n-p-1} \sum_{i=0}^{p-1} P_{n-1-i|p-i} + P_{n-p|0}$$

$$= P_{n-p|n-p-1} \left(\sum_{i=0}^{p-1} P_{n-1-i|p-i} + P_{n-p-1|0} \right)$$

$$= P_{n-p|n-p-1} \sum_{i=0}^{p} P_{n-1-i|p-i}$$

16 — As relações dos parágrafos 14 e 15 mantêm-se, quando $P_{n|p}$ perde o significado

inicial, designando simplesmente a fracção $n!/p! = P_{n|p}$ com $p \leq n$ inteiro positivo.

17 — Se nas permutações de n elementos, com o elemento b repetido p vezes, fizermos $a_{p+1} = a_{p+2} = \cdots = a_{p+q} = c$ obtemos as permutações de n elementos, dos quais p são iguais entre si, e outros q também iguais entre si.

Representaremos o número destas permutações por $P_{n|p,q}$ e uma delas por $\overline{P}_{n|p,q}$.

Claro que as $\overline{P}_{n|p,q}$ se obtêm das $\overline{P}_{n|p}$ como estas se obtiveram de P_n , com desprezo das permutações dos q elementos iguais a c. Consequentemente

$$P_{n|p,q} = \frac{P_{n|p}}{P_q} = \frac{n!}{p! \ q!}$$
 com $p + q \leq n$.

18 — Anàlogamente no caso de C conter mais algum subconjunto de elementos iguais.

19 - Propriedades de Pnip, q

a) É imediato que os índices p e q são permutáveis

$$P_{n|p,q} = P_{n|q,p}$$

b) Fórmulas de recorrência nos índices

1)
$$P_{n|p,q} = \frac{P_{n|p}}{q!} = \frac{n P_{n-1|p}}{q!} = n P_{n-1|p,q}$$

2)
$$P_{n|p,q} = \frac{P_{n|p}}{q!} = \frac{\frac{1}{p} P_{n|p-1}}{q!} = \frac{1}{p} P_{n|p-1,q}$$
$$= \frac{1}{p q} P_{n|p-1,q-1}$$

3)
$$P_{n|p,q} = \frac{n}{p q} P_{n-1|p-1,q-1}$$

c)
$$P_{n|p,q} = \frac{P_{n|p}}{q!} = \frac{P_{n-1|p-1} + P_{n-p|n-p-1} P_{n-1|p}}{q!}$$

= $P_{n-1|p-1,q} + P_{n-p|n-p-1} P_{n-1|p,q}$

- d) Os resultados anteriores mantêm-se para quaisquer inteiros $p \in q$, e quando se permutam o p e o q, nos símbolos em que eles aparecem.
- e) A expressão da propriedade c) pode obter-se da última expressão do parágrafo 14, substituindo $P_{n|p}$, $P_{n-1|p-1}$ e $P_{n-1|p}$ respectivamente por $P_{n|p,q}$, $P_{n-1|p-1,q}$ e $P_{n-1|p,q}$. Consequentemente, segundo o parágráfo 15

$$P_{n|p,q} = \sum_{i=0}^{n-p} P_{n-p|(n-p)-j} P_{n-(j+1)|p-1,q}$$

e

$$P_{n|p,q} = P_{n-p|n-p-1} \sum_{j=0}^{p} P_{n-1-j|p-j,q}$$

20 — Saponhamos que C é a reunião de dois subconjuntos disjuntos: C_1 , com p elementos aa; e C_2 , com n-p elementos bb. Diz-se que C é a soma directa dos subconjuntos C_1 e C_2 .

O número das permutações dos elementos de C é

$$P_{n|p,n-p} = \frac{n!}{p!(n-p)!}$$

21 - Combinações de n elementos

Vejamos como se formam estas permutações dos elementos de C. Considerados os n lugares que terão de ocupar os elementos de C, precisamos apenas de escolher plugares para os elementos aa; os lugares para os elementos b b ficam automàticamente determinados.

Assim $P_{n|p,n-p}$ indica o número de maneiras por que é possível escolher p lugares de entre n disponíveis, ou número de subconjuntos de p elementos, que é possível definir num conjunto de n elementos, visto que cada lugar corresponde a um elemento do conjunto C e a escolha de p lugares determina um subconjunto de p elementos.

Chamaremos a estes subconjuntos de p elementos combinações dos n elementos, p a p.

22 — Dum modo geral, para um conjunto C, de n elementos distintos, a determinação dum subconjunto de p elementos consiste em classificar cada elemento de C em elemento a-p precisamente — ou elemento b-n-p ao todo. Esta classificação é afinal a definição duma função f em C com dois valores a e b

$$f: C \to \{a, b\}$$
.

Precisamente porque é a dois valores chamar-lhe-emos uma dicotomia.

23 — Qualquer dicotomia determina uma bipartição de C, isto é, dois subconjuntos

$$E_1 = \{x \in C \mid f(x) = a\}$$

$$E_2 = \{x \in C \mid f(x) = b\}$$

complementares, ou tais que $E_1 + E_2 = C$ e $E_1 \cdot E_2 = 0$.

24 — As dicotomias de C, que determinam a bipartição de C num subconjunto de p elementos e noutro de n-p elementos, são tantas quantos os subconjuntos de p elementos, portanto $P_{n|p,n-p}$

25 — Dum modo geral chamaremos partição de ordem K de C os subconjuntos E_1, E_2, \dots, E_k tais que

$$E_1 + E_2 + \dots + E_k = C$$

 $E_i \cdot E_j = 0 \text{ com } i, j = 1, 2, \dots, k \text{ e } i \neq j.$

26 — O número de partições de ordem k de C, com E_1 de p_1 elementos, E_2 de p_2 elementos, \cdots , E_k de p_k elementos, é $P_{n|p_1,p_2,\ldots,p_k}$ com $p_1+p_2+\cdots+p_k=n$.

27 - Cada partição de ordem k de C é determinada por uma classificação multinominal em k categorias dos elementos de C.

Assim $P_{n|p_1,p_2,\ldots,p_k}$ com $p_1+p_2+\cdots+p_k=n$ é ainda o número de classificações desta natureza dos elementos de C que é possível definir, e que conduzem a partições de ordem k nas condições indicadas.

28 — Dum modo geral uma dada partição de C pode ser determinada por mais de uma classificação dos elementos de C. Por exemplo, as classificações $f\colon C=\{1,2,3,4\} \rightarrow (a,b)$ tal que f(1)=f(2)=a e f(3)==f(4)=b, e $g\colon C=\{1,2,3,4\} \rightarrow (a,b)$ tal que g(1)=g(2)=b e g(3)=g(4)=a conduzem à mesma partição $E_1=\{1,2\}$ e $E_2=\{3,4\}$.

29 — Representaremos o número de combinações de n elementos, p a p, ou o número de subconjuntos de p elementos dum conjunto de n elementos, por $\binom{n}{p}$ com $p \subseteq n$.
Assim

$$\binom{n}{p} = P_{n|p,n-p} = \frac{n!}{p!(n-p)!}$$

com p = n.

$30 = Propriedades de \binom{n}{p}$

a)
$$\binom{n}{p} = P_{n|p,n-p} = P_{n|n-p,p} = \binom{n}{n-p}$$
.

Evidentemente cada subconjunto de p elementos determina um subconjunto complementar de n-p elementos. São tantos de uns como de outros.

b) Seja $C=C_1+x$, com C_1 um subconjunto de n-1 elementos diferentes de x. Então, qualquer subconjunto de C_1 com p elementos é um subconjunto de p elementos de p0, em que não entra o elemento p1. O número de subconjuntos de p2 elementos de p3 e também este o número de subconjuntos de p4 elementos, que não contêm um dado elemento p5.

O número de subconjuntos, de p elementos, de C, em que figura o elemento x,

é o número de subconjuntos de C_1 com p-1 elementos, isto é, $\binom{n-1}{p-1}$.

c) Obtêm-se fórmulas de recorrência nos índices, fazendo no parágrafo 19 q = n - p e as transformações necessárias para obter um índice, à esquerda, igual à soma dos índices, à direita

Com a interpretação fácil: $\binom{n-1}{p}$ é o número de subconjuntos de p elementos em não entra o elemento x; $n\binom{n-1}{p}$ é o número de vezes em que os n elementos não figuram nos subconjuntos de p elementos. Para obter um subconjunto de p elementos é preciso que nele não figurem n-p dos elementos

dados. Será então $\frac{n}{n-p}\binom{n-1}{p}$ o número de subconjuntos de p elementos.

2)
$$\binom{n}{p} = \frac{1}{p} P_{n|p-1, n-p}$$

$$= \frac{1}{p} \cdot n \cdot P_{n-1|p-1, n-p}$$

$$= \frac{n}{p} P_{n-1|p-1, n-p}$$

$$= \frac{n}{p} \cdot \binom{n-1}{p-1}$$

Quer dizer: $n \cdot \binom{n-1}{p-1}$ dá o número de vezes que os n elementos figuram nos subconjuntos de p elementos. Para obter um subconjunto de p elementos é preciso utilizar p dessas figurações e será $\frac{n}{p}\binom{n-1}{p-1}$ o número de subconjuntos de p elementos.

(Continua)

Two classroom notes on algebra

by J. J. Dionísio

The computation of the Vandermonde determinant.

Let
$$\Delta_n(x_1, \cdots, x_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}.$$

We have

(1)
$$\Delta_2(x_1, x_2) = x_2 - x_1.$$

The computation of $\Delta_n(x_1, \dots, x_n)$ along the last column by the LAPLACE rule shows

that it is a polynomial in x_n of degree n-1. Its roots are x_1, x_2, \dots, x_{n-1} . Hence

(2)
$$\Delta_{n}(x_{1}, \ldots, x_{n}) = \\ \Delta_{n-1}(x_{1}, \ldots, x_{n-1}) \prod_{j=1}^{n-1} (x_{n} - x_{j}).$$

If we suppose that

$$\Delta_{n-1}(x_1, \dots, x_{n-1}) = \prod_{i>j} (x_i - x_j)$$

then from (1) and (2) we infer that

$$\Delta_n(x_1, \dots, x_n) = \prod_{i>j} (x_i - x_j).$$