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On symmetlrical Fourier kernel I(')

by R. U. Yerme

(Department of Mathematics. Uuniversity of Cape Coast — Ghane)

ApstracT. A generalised symmetrical
Fourier kernel has been introduced. It has
been tried to give a more general form of
reciprocal transform with this Fourier kernel.
Finally a formula for self-reciprocal functions
associated with the ZH-function is being esta-
blished.

1. InTroDUCTION. The functions % ()
and % (x) are said to form a pair of FOoURIER
kernels if the following pair of reciprocal
equations :

(1.1) 9(=r)=j:k(my)f(y)dy.

(1. 1y f(m)=fo“k(wy)g(y)dy,

are simultaneously satisfied. As usual the
kernels will be symmetrical if k(x) = k(x)
and if k(x)s£h(x) the kernels will be
uosymmetrical. The functions stndied by
Kesarwaxi (1959), Fox (1961) and others
as symmetrical FouriEr kernels are the
G-functions.

I shall try to introduce a generalised
symmetrical Fourier kernel by taking the
more general form of the Z-function studied
by Fox (1961). With this kernel, a new
reciprocal transform has been defined. Then
a formula for self-reciprocal functions asso-
ciated with the H-function is given.

(1) Presented at the 8th Biennial Conference,
Ghana Science Association at University Of Science
And Technology, Kumas: (1973).

2. Employing the definition of the Z/-fun-
ction, we consider the function :

m4n,p+
2.1) o 2:2;—{—2!1(1‘) =

=(2wf)-'j;1':1r(cj+w(s ~1/2).
-l:lIl“(a,-— 2 (s —1/2)) -
ilzIr(d,-Hj(s_ 1/2))-
-I:I(bjﬂ 8(s—1/2))
.{f[r(dj_ 3 (s —1/2)).
TIr G486 1/2))}"-
-II:Ir(cJ--r,-(s— 1/2))-

LT (04 (s — 1/2) ]“,r-ds,
1

where the following simplifying assumptions
are mads:

(@) 7>0,=1,:,m;
@>0,fml, . ,p;
6,>0,/=1,...,n;
Bi>0,f=1,+..,9.
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(i0)
'Dv= 2 (i Ti= i a; + iai— i@;) >0.
1 1 1 1

(7tY) All the poles of the integrand of
(2.1) are simple.

(fv) The contour T is a straight line
parallel to the imaginary axis in the s plane
and the poles of I'(¢; 4 ¢,(s —1/2)) and
T'(d; +3;(s—1/2)) and lie to the left of 7
while those of TI'(b; — B,(s — 1/2)) and
T'(aj —«;(s - 1/2)) lie on the right of 7.

For the sake of brevity, I shall write (2.1)
in the form

(©.2) H,(z)= (2! J;ml (s)z—ds .

It can be easily shown that M,(s) is the
MerLiy transform of Xy (x) and it satisfies
the necessary and sufficient condition [9] that
H, (x) may be a symmetrical Fourier kernel
is that
(2.3) My(8)M(l—s)=1.

A number of Fourier kernels follow as
particular cases by specializing the parameters
in (2.1).

With the above FougriErR kernel, the new
reciprocal transform may be introduced as:

@49  g@= [ HEpfndy.

v

A systematic study of the above reciprocal
transform can be made as in the case of
HaNkeL transforms.

The HANKeL transform introduced by
Verma [7]:

j:l,...

(2.5) g(@)=

k—m—1/2—v/2,
—k+m+1/2 4 /2

*® HE
E'f Goia| =¥ V2 —k—m, v/2—k+m,
¢ l—v/') + A+ m
- »
—vf24+h—m

fydy,

is a special case of (2.4) for n=0, v=20,
m=2, p=1, =1, j=1,...,p; 1,=1,
ym; ay=k—m—1/2 —v/2, ay=
=—lk+m+1+v/2, ¢=v/2—2—m,
cg=vf2 —h+4+m, ez=—v/24+2+m,
cg=—y/2 + % —m in (2.1).

The integral transform (2. 5) reduces to a
generalised HHANKEL transform due to BHISE
[2]1 for A = — m, which itself reduces to
HANKEL transform

(2.6) g(x)= J.‘w (xy)2Jd,(xy) f(y)dy-

0

3. Now we estimate the asymptotic be-
haviour of M,(s), s=o +¢¢t, and ¢ real,
when |t| is large. For large s the asymp-
totic expansion of the Gamma function is [3]:

logT'(s4a)=(3+a—1/2)]ogs—
—s+1/2 log(27) 4+ 0(s7),

(3.1)

where |args|< =. To find the behaviour
of A (s) for large |?|, we replace Gauma
funetions involving — s into those containing
+ s with the help of the relation

3.2) T(E)I'(l—2)=mncosecnz.

Then using (3.1) and the simplifying as-
gumptions made in (2.1), (¢)-.-(v), we get
(3.3) My(s)ax—*=
|t|Pe-12 exp [zt (D log|t| —logax — B)} X

><1Q+0(|t[ ),
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for large |t|, where B is a constant and
Q is also a constant but ( may have one
value for large positive ¢ and another value
for large negative ¢.

From (3. 3) it follows that if ¢ < 1/2, the
integral (2.2) is uniformly convergent with
respect to x. \We may, therefore integrate
through the integral sign of (2. 2).

Let us take

6.4 HV ()= f “H,(z)dz,
0

then

(3.5) HV(x) = (2wi)".

-fMl @)1 —s8)'a'""ds.

This has been proved to be valid only
when ¢ < 1/2, but for o= 1/2, the proof
can be extendod. On the line o=1/2,
M, (s)x-* is bounded from (3.3) and there-

fore M, (8)/(1 — 8)e Ly(1/2 — ico,1/2+ica).

4. 1 f@) = [ k@ /@)y, then f(a)

is said to be a self-reciprocal function for
kernel k(x). All the symmetrical FOURIER
kernels can be associated with self-reciprocal
functions and conversely.

Now we shall establish a formula for the
self-reciprocal functions of /) (x). The fol-
lowing results will be required in theorem
relating self-reciprocal functions. We shall
write :

(4.1) M, (8) = Ny (s)/ Py (s),

where

4.2) N ()= TIT(c;47 (s — 1/2))-
1

I @ — (- 1/2) <

s TIT (4 + & (s — 1/2)) -
1

LT — 85 - 1/2)).
1

Here M, (s) is the coefficient of z-* in the
integral (2.1) and so

(4.3) Pi(s)=N(1—3).

TueorEM. If
(i) ')’J->0,j=l,-..,m; dj>0,j=1,...,p;
3 >0,j=1,.+,0; B;>0,j=1,...,v,
ko P
(ii) D=2(Z yj_zaj_}_
1 1

+iaj*iﬁj)>0s
1 1

(i) R(a)>0,j=1,-,p;
R(b)>0,j=1 10, ¥, R(Cj)>0,j=1 grer,
R(d)>0,j=1,:--,n;

(iv) E;(1/2 —s) is an even function of s,
() Ny (#)E;(s)eLy(1/2—ico, 1/24ic0),
(vi)

f(x)=[.‘31ri)_lf N (o) By (8 "de

1/2 -1

1/2+1

then
(4.4) j:f(x)dx=f:f(t)H§"(xt)r‘dt.

It includes the Theorem 4 and Theorem 6
of Fox [3] as corollaries.

Proor. This theorem is proved by per-
forming two applications of PArRsSEvaL theo-
rem, Theorem 72 [6, p. 95].

From (3. ), it follows that M, (s)/(1 — s)e
€ Ly(1/2—ioo,1/2+ico) and that H#{V(x)/x
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is its MeLLIN transform. Thus, using ¢ as the
MgerLLiy transform variable, it follows that
H{"(x)/t, and M,(s)x'-*/(1—s) are MELLIN
transform of each other. Then, on using (v)
and Theorem 72 [6] one can apply the Par-
SEVAL theorem and obtain

(4.5) _]:f(‘) A (zt)t1dt =

‘ /2 +iom
~ (21?5)“] E M, (s)2t -+ (1 — g)1 <
1 —im

XN (1—8)E;(1—s)ds

(4.6) _—
= (2w i) f Ny(s) By (s)a' (1 —s)1ds,
1/2—ico

using (4. 1), (4. 3) and condition (:v).
Again using Theorem 72 [6] and defining
the function F'(t), we have

4.7) ﬁzj'(z)dt=£mf(r) F(tydt

(4.8)

=(2.,”')-1-£::fm Nl(sJE;(s):ﬂ—'(l— a)*‘lds.

By comparing (4.5) and (4 8), we get the
required result.

The generalised /-function kernel can be
utilised in the study of dual integral equa-
tions. Employing the technique [4] introduced
by Fox, we can solve dual integral equations
with the following H-function kernels:

j; I!gptnﬁ.:::,;:-‘rﬂn+k (xu)f(uw)du=g(x),
(0<xr<1),

£ II;::;::'J:'J?;;+ an 4k (zu) f(u)du={(x),
(e >1),

where ¢(x) and {(x) are given and f(x) is
the unknown function to be found. By using
fractionual integration these equations can be

roduced to two others with common kernsl

m-n, p+v
}}2p+ﬂq.2m+2ﬂ

Fourier kernel (2.1).
Then f(z) can be found by the known
Fourier inversion formula.

(z), which is the symmetrical
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