On symmetrical Fourier kernel I(')

by R. U. Verme

(Department of Mathematics, University of Cape Coast - Ghane)

ABSTRACT. A generalised symmetrical Fourier kernel has been introduced. It has been tried to give a more general form of reciprocal transform with this Fourier kernel. Finally a formula for self-reciprocal functions associated with the *H*-function is being established.

1. Introduction. The functions k(x) and h(x) are said to form a pair of FOURIER kernels if the following pair of reciprocal equations:

(1.1)
$$g(x) = \int_0^\infty k(xy)f(y) dy$$
,

$$(1.1)' f(x) = \int_0^{\infty} h(xy) g(y) dy,$$

are simultaneously satisfied. As usual the kernels will be symmetrical if k(x) = h(x) and if $k(x) \neq h(x)$ the kernels will be unsymmetrical. The functions studied by Kesarwani (1959), Fox (1961) and others as symmetrical Fourier kernels are the G-functions.

I shall try to introduce a generalised symmetrical FOURIER kernel by taking the more general form of the H-function studied by Fox (1961). With this kernel, a new reciprocal transform has been defined. Then a formula for self-reciprocal functions associated with the H-function is given.

2. Employing the definition of the H-function, we consider the function:

$$(2.1) H_{2p+2q,2m+2n}^{m+n,p+q}(x) =$$

$$= (2\pi i)^{-1} \int_{T} \prod_{1}^{m} \Gamma(c_{j} + \gamma_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{p} \Gamma(a_{j} - \alpha_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{n} \Gamma(d_{j} + \delta_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{q} (b_{j} - \beta_{j}(s - 1/2)) \cdot \cdot \cdot \cdot \left\{ \prod_{1}^{n} \Gamma(d_{j} - \delta_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{q} \Gamma(b_{j} + \beta_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{q} \Gamma(b_{j} + \beta_{j}(s - 1/2)) \right\}^{-1} \cdot \cdot \cdot \left\{ \prod_{1}^{m} \Gamma(c_{j} - \gamma_{j}(s - 1/2)) \cdot \cdot \cdot \prod_{1}^{p} \Gamma(a_{j} + \alpha_{j}(s - 1/2)) \right\}^{-1} \cdot x^{-s} ds,$$

where the following simplifying assumptions are made:

(i)
$$\gamma_{j} > 0, j = 1, \dots, m;$$

 $\alpha_{j} > 0, j = 1, \dots, p;$
 $\hat{\sigma}_{j} > 0, j = 1, \dots, n;$
 $\beta_{j} > 0, j = 1, \dots, v.$

⁽¹⁾ Presented at the 8th Biennial Conference, Ghana Science Association at University Of Science And Technology, Kumasi (1973).

$$D = 2 \left(\sum_{1}^{m} \gamma_{j} - \sum_{1}^{p} \alpha_{j} + \sum_{1}^{n} \delta_{j} - \sum_{1}^{q} \beta_{j} \right) > 0.$$

(iii) All the poles of the integrand of (2.1) are simple.

(iv) The contour T is a straight line parallel to the imaginary axis in the s plane and the poles of $\Gamma(c_j + \gamma_j(s-1/2))$ and $\Gamma(d_j + \delta_j(s-1/2))$ and lie to the left of T while those of $\Gamma(b_j - \beta_j(s-1/2))$ and $\Gamma(a_j - \alpha_j(s-1/2))$ lie on the right of T.

For the sake of brevity, I shall write (2.1) in the form

$$(2.\,2) \quad H_{1}(x) = (2\,\pi\,i)^{-1} \int_{T} M_{1}(s)\,x^{-s}\,d\,s\;.$$

It can be easily shown that $M_1(s)$ is the Mellin transform of $H_1(x)$ and it satisfies the necessary and sufficient condition [9] that $H_1(x)$ may be a symmetrical Fourier kernel is that

$$(2.3) M_1(s) M_1(1-s) = 1.$$

A number of FOURIER kernels follow as particular cases by specializing the parameters in (2.1).

With the above Fourier kernel, the new reciprocal transform may be introduced as:

(2.4)
$$g(x) = \int_0^\infty H_1(xy) f(y) dy$$
.

A systematic study of the above reciprocal transform can be made as in the case of HANKEL transforms.

The Hankel transform introduced by Verma [7]:

$$(2.5)$$
 $g(x) =$

$$= \int_0^\infty G_{2,4}^{2,1} \left(x y \middle| \begin{matrix} k - m - 1/2 - \nu/2 , \\ -k + m + 1/2 + \nu/2 \\ \nu/2 - \lambda - m, \nu/2 - \lambda + m, \\ -\nu/2 + \lambda + m, \\ -\nu/2 + \lambda - m \end{matrix} \right).$$

$$f(y) dy,$$

is a special case of (2.4) for n=0, v=0, m=2, p=1, $x_j=1$, j=1, ..., p; $\gamma_j=1$, j=1, ..., m; $a_1=k-m-1/2-\nu/2$, $a_2=m-k+m+1+\nu/2$, $c_1=\nu/2-\lambda-m$, $c_2=\nu/2-\lambda+m$, $c_5=-\nu/2+\lambda+m$, $c_4=-\nu/2+\lambda-m$ in (2.1).

The integral transform (2.5) reduces to a generalised Hankel transform due to Bhise [2] for $\lambda = -m$, which itself reduces to Hankel transform

(2.6)
$$g(x) = \int_0^\infty (x y)^{1/2} J_\nu(x y) f(y) dy.$$

3. Now we estimate the asymptotic behaviour of $M_1(s)$, $s = \sigma + it$, and t real, when |t| is large. For large s the asymptotic expansion of the GAMMA function is [8]:

(3.1)
$$\log \Gamma(s+a) = (s+a-1/2)\log s - s + 1/2 \log (2\pi) + 0 (s^{-1}),$$

where $|\arg s| < \pi$. To find the behaviour of $M_1(s)$ for large |t|, we replace Gamma functions involving -s into those containing +s with the help of the relation

(3.2)
$$\Gamma(z) \Gamma(1-z) = \pi \csc \pi z$$
.

Then using (3.1) and the simplifying assumptions made in (2.1), $(i) \cdots (iv)$, we get

$$\begin{split} (3.3) \quad & M_{1}(s) \, x^{-s} = \\ & |\, t \, |^{D(\mathfrak{a}-1/2)} \exp \, \left\{ i \, t \, (D \log |\, t \, | - \log x - B) \right\} \times \\ & \times \left\{ Q + 0 \, (\, |\, t \, |^{-1}) \right\}, \end{split}$$

for large |t|, where B is a constant and Q is also a constant but Q may have one value for large positive t and another value for large negative t.

From (3.3) it follows that if $\sigma < 1/2$, the integral (2.2) is uniformly convergent with respect to x. We may, therefore integrate through the integral sign of (2.2).

Let us take

(3.4)
$$H_1^{(1)}(x) = \int_0^x H_1(x) dx$$
,

then

(3.5)
$$H_1^{(1)}(x) = (2 \pi i)^{-1} \cdot \int_T M_1(s) (1-s)^{-1} x^{1-s} ds.$$

This has been proved to be valid only when $\sigma < 1/2$, but for $\sigma = 1/2$, the proof can be extended. On the line $\sigma = 1/2$, $M_1(s)x^{-s}$ is bounded from (3.3) and therefore $M_1(s)/(1-s) \in L_2(1/2-i\infty, 1/2+i\infty)$.

4. If
$$f(x) = \int_0^\infty k(x y) f(y) dy$$
, then $f(x)$

is said to be a self-reciprocal function for kernel k(x). All the symmetrical FOURIER kernels can be associated with self-reciprocal functions and conversely.

Now we shall establish a formula for the self-reciprocal functions of $H_1(x)$. The following results will be required in theorem relating self-reciprocal functions. We shall write:

$$(4.1) M_1(s) = N_1(s) / P_1(s),$$

where

$$(4.2) N_1(s) = \prod_{j=1}^{m} \Gamma(c_j + \gamma_j(s - 1/2)) \cdot \prod_{j=1}^{p} \Gamma(a_j - \alpha_j(s - 1/2)) \times$$

Here $M_1(s)$ is the coefficient of x^{-s} in the integral (2.1) and so

$$(4.3) P_1(s) = N_1(1-s).$$

THEOREM. If

(i)
$$\gamma_j > 0, j=1,\dots,m; \alpha_j > 0, j=1,\dots,p;$$

 $\delta_j > 0, j=1,\dots,n; \beta_j > 0, j=1,\dots,v.$

(ii)
$$D = 2\left(\sum_{1}^{m} \gamma_{j} - \sum_{1}^{p} \alpha_{j} + \sum_{1}^{n} \delta_{j} - \sum_{1}^{v} \beta_{j}\right) > 0,$$

(iii)
$$R(a_j) > 0$$
, $j = 1, \dots, p$;
 $R(b_j) > 0$, $j = 1, \dots, v$; $R(c_j) > 0$, $j = 1, \dots, m$;
 $R(d_j) > 0$, $j = 1, \dots, n$;

(iv)
$$E_1(1/2-s)$$
 is an even function of s ,

(v)
$$N_1(s) E_1(s) \in L_2(1/2 - i \infty, 1/2 + i \infty)$$
,

(vi)

$$f\left(x\right)=\left(2\,\pi\,i\right)^{-1}\int_{1/2\,-i\,\infty}^{1/2\,+\,i\,\infty}\,N_{1}\left(\,s\,\right)\,E_{1}\left(\,s\,\right)x^{-\,s}\,d\,\,s\,\,,$$

then

(4.4)
$$\int_0^x f(x) dx = \int_0^\infty f(t) H_1^{(1)}(x t) t^{-1} dt.$$

It includes the Theorem 4 and Theorem 6 of Fox [3] as corollaries.

PROOF. This theorem is proved by performing two applications of Parseval theorem, Theorem 72 [6, p. 95].

From (3.5), it follows that $M_1(s)/(1-s)$ e $\epsilon L_2(1/2-i\infty,1/2+i\infty)$ and that $H_1^{(1)}(x)/x$

is its Mellin transform. Thus, using t as the Mellin transform variable, it follows that $H_1^{(1)}(x)/t$, and $M_1(s)x^{1-s}/(1-s)$ are Mellin transform of each other. Then, on using (v) and Theorem 72 [6] one can apply the Parseval theorem and obtain

(4.5)
$$\int_{0}^{\infty} f(t) H_{1}^{(1)}(x t) t^{-1} dt =$$

$$= (2 \pi i)^{-1} \int_{1/2 - i \infty}^{1/2 + i \infty} M_{1}(s) x^{1-s} (1-s)^{-1} \times X_{1}(1-s) E_{1}(1-s) ds$$

$$(4.6) = (2 \pi i)^{-1} \int_{1/2 - i\infty}^{1/2 + i\infty} N_1(s) E_1(s) x^{1-s} (1-s)^{-1} ds,$$

using (4.1), (4.3) and condition (iv).

Again using Theorem 72 [6] and defining the function F(t), we have

(4.7)
$$\int_0^x f(t) dt = \int_0^\infty f(t) F(t) dt$$

$$\begin{aligned} &(4.8) \\ &= (2\,\pi\,i)^{-1} \!\!\int_{1/2\,-\,i\,\infty}^{1/2\,+\,i\,\infty} N_{\rm I}(s) E_{1}(s) x^{1-s} (1-s)^{-1} ds \,. \end{aligned}$$

By comparing (4.5) and (4.8), we get the required result.

The generalised H-function kernel can be utilised in the study of dual integral equations. Employing the technique [4] introduced by Fox, we can solve dual integral equations with the following H-function kernels:

$$\int_0^\infty H_{2p+2v+k,2m+2n+k}^{m+n,p+v+k}(x\,u)f(u)\,d\,u = \varphi(x),$$

$$(0 < x < 1),$$

$$\int_0^\infty H_{2p+2\nu+k',2m+2n+k'}^{m+n+k',p+\nu}(xu)f(u)du = \psi(x),$$

$$(x>1),$$

where $\varphi(x)$ and $\psi(x)$ are given and f(x) is the unknown function to be found. By using fractional integration these equations can be roduced to two others with common kernel $H_{2p+2q,2m+2n}^{m+n,p+\nu}(x)$, which is the symmetrical FOURIER kernel (2,1).

Then f(x) can be found by the known FOURIER inversion formula.

REFERENCES

- Erdélyi, A., Higher Transcendental Functions, Vol. I, Bateman Manuscript Project, New York, 1953.
- [2] Brise, V. M., Operators of fractional integration and a generalized Hankel transform, Collect. Math., 16 (1964), p. 201.
- [3] Fox, C., G and N-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), p. 395-429.
- [4] SAXENA, R. K., A formal solution of certain dual integral equations involving H-functions, Proc. Camb. Philos. Soc., 63 (1967), p. 171-178.
- [5] Kesarwani, R. N., A Fourier kernal, Math. Z., 70 (1959), p. 297-299.
- [6] TITCHMARSH, E. C., Introduction to the Theory of Fourier of Fourier integrals, Oxford, University Press, 1937.
- [7] Verma, R. U., On an integral transform and self--reciprocal functions involving two variables, Mat. Vesnik. (Belgrade), 6 (21), (1969), p. 269-275.
- [8] WHITHARER, E. T., and WATSON, G. N., A Course of Modern Analysis, Cambridge, University Press, 1915.
- [9] WATSON, G. N., General Transform, Proc. Lond. Math. Soc. Ser. II, 35 (1933), p. 156-199.